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This document represents the  second progress report  on the NASA reseazch 

grant NGR 44-001-027. 

these par t s  is presented below i n  order t o  indicate the  general nature of each 

sect ion. 

TIie report  i s  divided in to  e ight  parts. A summary of 

Part I is  a report  02 the research outlined i n  Part I11 of the f i r s t  

progress report. 

function with constraints  on the parameters. 

in order t o  c l a r i f y  par t s  of t h e  development so tha t  application of the prin- 

c ip les  can be made. 

In general, it deals with the problem of f i t t i n g  a nonlinear 

Numerical examples are presented 

Part  I1 is a most significant development i n  the a r a o f  constructing 

mathematical models with a limited amount of data. It considers the form of the 

function selected t o  represent the  general response of the dependent variable 

over the applicable range of the independent variable. 

first order term or' the variables t o  the preselected functioa, it is possible 

t o  determine a curve with more parameters than daia points. 3y repeating t h i s  

process for each higher order term, it is possible t o  expand B single equation 

t o  a large number of terms, usiag the least squares criteria for  parameter 

select ion. 

0 
By r e s t r i c t i a g  the 

Part I11 is a developmnt of a computer program fo r  use In  evaluation of 

th9 cos t  estimating relat ionship developed i n  Part  11 of this report. 

program vas used t o  checkout and evaluate the overal l  consistency of the cost  

The 

equation. 

iC was possible t o  judge the behavior of t h e  CER over a ra ther  extended range. 

By u t i l i z ing  three dimensional co-ordinate paper t o  p lo t  the resu l t s ,  

%he r e su l t s  produced by t h i s  program tend t o  support the approach developed i n  

Part 11. 
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Part  IV is a report on the d e v e i o p n t  of a dyrsamic programming algorithm 

f o r  solut ion of problems tha t  were discussed with another M A  cost  research 

contractor. 

t o  introduce a new application of dynamic programing as w e l l  as contribute 

t o  the technology i n  the cost  research area. 

bination of individual predictors of the same cost  by weighting each term so as 

to  minimize the e r ror  sum of squares. 

This is an applied research problem which provided the opportunity 

The basic problem was the cm- 

Part  V is the development of a methodology f o r  the determination of run- 

out cos ts  for  p a r t i a l l y  completed subsystem. 

use the Gemini data  i n  a general manner i n  order t o  predict  the run-out of 

Apollo subsystems. 

as w e l l  as a computerized algorithm for determining run-out costs. 

research associated with t h i s  problem was essent ia l ly  i n i t i a t e d  and completed 

within t h i s  reporting period. 

suggested by NASA/M!X/LRP. 

The par t icu lar  approach was t o  

This study produced a number of tangential  investigations 

The applied 

This was i n  response t o  a spec i f ic  problem 

Part  VI is a discussion of the present s ta tus  of the research which is  being 

conducted i n  the area of quantification of expertise. This par t  of the report  

provides a br ief  his tory of the area and reports  on current progress and ques- 

Cionnaires developed for i n i t i a l  investigations. 

Part  VI1 is of the same general nature as Part VI of the first progress 

report  i n  that it represents research i n  an area related t o  general cost models. 

More specif ical ly ,  it develops a concept f o r  sophisticated production cost  

Iliodels which consider the recycle, cleanup, closed loop and recycle with a 

primary loss  cases. 

Part VI11 i s  the informal consulting memoranda generated during the time 

period cuvered by this report. 



PART I 

CONSTRAWED ESTIMATION IN NONLINEAR MODELS: 

A MATHEMATICAL P R V  APPROACH. 

By 
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Industrial Engineering Department 

Texas A M  University 

May 1966 



INTRODUCTION 

The problem of "estimation of parameters with constraints  for  models which 

are nonlinear i n  the parameters" w a s  discussed in Part  I11 of Propress Report I 

f o r  NASA Grant SC-NGR-44-001-027, December, 1965. 

problem was  presented, the possible approaches t o  its solut ion w e r e  discussed, a 

bibliography was  included, and a connection was made of t h i s  pure research prob- 

l e m  with the  spec i f ic  problems anticipated i n  the construction of cost  models. 

I n  tha t  report  the general 

This section of t h i s  report  w i l l  present some of the theoret ical  r e s u l t s  

obtained, a discussion of a promising method of a t tack  on the estimation problem, 

and a spec i f ic  example i n  ~ i c h  a solution was obtained. 

Only the estimation problem has been investigated in d e t a i l ;  the question of 

propert ies  of the estimates being deferred u n t i l  the  general estimation theory 

has been adequately developed. It is clear, however, t ha t  the estimates should 

be e i t h e r  "best linear estimates" (where "best" means minimum mean-square error)  

or  estimates which depart from tha t  c r i t e r ion  only s l igh t ly .  In f ac t ,  the 

method of estimation has been formulated in a manner designed t o  insure tha t  

property o r  some extension of it. 

Therefore, while estimation only is discussed i n  t h i s  report ,  the questio3 

of propert ies  of the estimators has actual ly  been considered concurrently. 
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"RE GENERAL CONSTRAINEI) NONLINEAR PROBLEM 

The objective is t o  estimate the parameter vector 8 i n  the function 

y = f (X; e), where X = (xl, ..., xk) is a vector of observable variables,  y is 

observable ( the  dependent variable),  8 = ( e l ,  ..., 8 ) is a vector of fixed but 

unknown parameters, and 0 is res t r ic ted  (constrained) t o  a cer ta in  region of 

E* (p - dimensional Euclidean space). 

P 

The problem as s ta ted  above is t h e  most general of estimation problems. 

No specif icat ion of the function f o r  of the nature of the  constraints  on 8 

is made. 

t ions) for which there  ex i s t  standard methods of solut ion are simply special  

cases of t h i s  general problem. 

In fact, a l l  problems of parameter estimation (based on sample observa- 

For example, i f  f (X, e) is  l inear  i n  the parameters 8 1  and 8 is uncon- 

s t ra ined,  we have the standard multiple regression problem. 

l inear  in 8 and 0 is constrained by l inear  inequal i t ies  while each element of 0 

is required t o  be posit ive,  the estimation problem can be formulated as a 

quadratic programming problem. 

I f  f (X, 0) is 

0 

The case w e r e  f (X, 8 )  is nonlinear i n  0 but 0 is unrestr ic ted has been 

extensively investigated and various i t e r a t i v e  techniques have been proposed for 

its solution. 

i n i t i a l  vector eI. is crit ical .  

where, i n  addition t o  f (X, 8 )  being nonlinear, 8 is constrained. 

problem is  the main topic t o  be discussed, but i n  the  discussion of its solut ion 

w e  a l so  are able  t o  propose a possible c r i t e r i o n  fo r  an i n i t i a l  81 i n  the un- 

r e s t r i c t ed  case. 

As with any i t e r a t i v e  technique however, the choice of an 

This same d i f f i c u l t y  has a r i sen  in the problem 

This last 

Before proceedfng t o t h e  theoret ical  basis  f o r  solut ion to the problem, l e t  

us f i r s t  consider the problem in  somewhat less general language so t h a t  the  

reader with a l imited mathematical background may ge t  a "feel" fo r  the problem. 
0 
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As a vehicle for discussion, let us formulate a simple cost estimation 

problem. 

subsystem and we make the assumption that some mathematical function of the two 

variables xl (subsystem weight) and x2 (number of flight functions) adequately 

describes cost. 

function is y = xlel + x 82 , where y represents cost, and el and 8, are 

constants (parameters). Then, if 

the values of x1 and x2 in order to know the cost y exactly for that pair of 

values x1 and x2 . 
We do not estimate costs, we know them. 

Suppose that it is desired to estimate the cost of a certain spacecraft 

We might go a step further and say that we know the form of the 

2 

and 0, are known, we may simply "plug in" 

In other words, if and 8, are known, there is no problem. 

Unfortunately one is rarely in this ideal situation. In fact, we consider 

ourselves quite fortunate to be able to specify the form of the function. 

Suppose, however, that we can, but that we do not know el  and 8,. 

further that our experience tells us that both 8, and 8, must be positive con- 

stants. 

Suppose 

We now have a constrained estimation problem, for what we would like 
0 

to do is the following. 

We have a little bit of knowledge about the parameters e l  and 0, (they are 

We also have some historical data pertaining to costs of subsystem positive). 

of this type. 

cost y for this subsystem. 

number of functions (x2 was 5, cost (y), was known. 

form is correct, and if we know eland e,, then the actual observed y would have 

been equal to (9,000) 

That is, for certain pairs (x1, X$ we have observed the actual 

For example, when weight (xl) was 9,000 pounds and 

Obviously if our functional 

+ ( 5 )  82 . 
We now propose to use this data as shown below. Suppose we have three such 

sets of data. We form the following three equations: 

, 
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where (xll, x,~) represents the known x1 and x2 for observed cost yl, (x12, x22) 

are associated with y,, etc. What two positive 

numbers e l  and 8 

numbers, they might be determined by inspection, or "trial and error", or by 

some "sophisticated" mathematical technique. 

eventually, by some means, we will find those two positive numbers. 

Usually though, the situation is not quite so clearly defined. 

We ask ourselves the question: 

satisfy these three equations?". If there are two such 
2 

In fact we are certain that 

For one 

thing, the form of the function might be only an approximation to the actual 

cost function (in fact, it usually h a n  approximation). Then there will not 

exist pair of numbers eland 6 that satisfy the three equations exactly, 

and a "trial and error" method would have us "trying and erring" indefinitely. 

2 

Another, though not so severe, difficulty is that the x's or the y might 

not be exactly known. 

purposes, but y itself night only be an estimate or, more likely, impossible to 

determine exactly (what is the exact cost of solder-joint number 2437?).  

After considering the above points we conclude that it is virtually 

Usually the x's will be known exactly for all practical 

impossible to ever really determine and e2, so the best we can hope to dr> 

is to estimate them in such a way that the estimated value is expected to be 

very near the actual value, which in turn will enable us to estimate costs 

adequately. We are now at the heart of the problem. 

There are standard statistical techniques which enables us to estimate 

parameters and say something about how good these estimates are if the problem 

is linear, that is, if y has a form like y = 81 x1 + e2 x2 or y = e l  + B2x1 x2 
instead of being nonlinear, as y = x '1 + x2'2 ("linear" and "nonlinear" refer 

to the e's, not the x's). 

approached by first approximating y by a linear function and then using a 

response-surface technique on this linear approximation 

satisfactory) . 

1 

Even if the problem is nonlinear, it is usually 

(this is not always 
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2 
However, the problem of the constraints now enters. Suppose that 8 and 0 

1 

are very nearly zero, for example, that their actual values are e l  = .002 and 

02 = .001. Suppose further that because of the fact that we only have observed 

a few points, and at least one observation is somewhat inaccurate, our standard 

procedure tells us that the estimate of e l  is - .0003 and of e2 is .0012. 
Immediately this is an unuseable result, for we know that the actual e l  must 

be positive. 

negative one we obtained. 

One could in fact say that 8, = 0 is a better estimate than the 

But is e l=  0 the best estimate? 

The above discussion of an elementary constrained estimation problem was 

intended to point out at least a few of the reasons why the general problem is 

being considered. It should also establish a relationship between the purely 

academic research being carried out under the grant with the specific problem 

of cost estimation. If a nonlinear cost equation is specified, and if some 

information is available about the location (or size) of the constants in the 

equation, then the estimation problem is a special case of the general problem 
0 

we now attempt to solve. 

FORMULATION OF TEE ESTIMATION PROBLEM AS 

A MATHEMATICAL PROGRAMMING PROBLEM 

In the general problem originally proposed, we wish to estimate the para- 

meter vector e in the function y = f (X, e) when e is constrained to some 
region of Euclidean space. 

and consider only the unconstrained problem. 

Suppose for the moment we regard 0 as unrestricted 

Let us make the assumption that while we cannot observe y exactly, we are 

able to observe 

= f (Xi; 0) + ei , y i 

where yi is the observed response corresponding to an input vector 
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Xi = (x fi, x2i,. . . , xki) and ei is a random error whose expectation is zero and 
2 whose fixed but unknown variance is (1. 

We now consider the set of observed responses 

y i = f  (Xi; @ + e i , i = l ,  2, ..., n ,  

a set of n data-points, or n observations. 

in matrix notation as 

This set can be described compacty 

Y = U  (X; 0) + e ,  

2 
We further assume that the ei's are independent with comaon variance (1. 

A standard statistical procedure for estimating 8 is least-squares; that 

is, find that vector 8 which minimizes the sum of squares of the "residuals", or 

ei's. 

estimator for 8, in the sense of the well-known Gauss-Markoff Theorem. 

Under the assumptions stated, such solution is a best linear unbiased 

In matrix terms, the problem is to minimize 

e'e = [y - u (X; ~)I'[Y - u (X; 011 , 
which is a function only of the p-vector 0, since all the y's and x 's  are 

observed (known) values. 

This problem has a very simple solution if f (X; 8) is linear in the 8's. 

When that is the case, e'e is a quadratic form in 8, which, when each partial 

derivative of e'e is set equal to zero, yields a system of simultaneous linear 

equations in 8. 

existence of a minimum). 

(Recall that such a system is a necessary condition for the 

Now, if f( X; 0) is not linear in 8,  then e'e will not be a simple quadratic 

form in 8 ,  and our system of equations representing the necessary condition fo r  

a minimum will usually be quite difficult, if not impossible to solve analytically. 
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A numerical solution of such a system is possible, but usually not practicable. 

One resolut ion of t h i s  d i f f icu l ty ,  which is  a w e l l  known and w e l l  documected 

approach, is the "linearization" of f ( X ;  €j using a f i rs t -order  Taylor's Series 

expansion about some par t icu lar  0, say 8*, and then minimizing e'e, where 

U (X; (3) is  replaced by U* (X; 8 )  based on the  approximation. 

method of "steepest ascent", an i t e r a t ive  technique, is ordinar i ly  employed t o  

accomplish the  missimization. 

i n i t i a l  vector QI, t o  begin the f i r s t  i t e r a t ion ,  is i n  the neighborhood of the 

ac tua l  solution. 

various conditions on and modifications of the technique have been proposed. 

A good discussion of these modification is found in references [l] and 121. 

The w e l l  known 

It is known t o  converge t o  a solut ion if the 

Obviously some cr i te r ion  is required to  assure a good gI, and 

Of course a Taylor's Ser ies  approximation is not the only method of 

approach t o  solving a problem of this type. 

t o  converge, has been given by Dr.  H. 0.  Hartley i n  reference [3]. 

approach in t h i s  report  w i l l  employ t h e  Taylor's Series approximation technique, 

but insubsequent research we w i l l  explore the p o s s i b i l i t i e s  of using D r .  

Hartley's procedure as applied t o  the constrained estimation problem. 

Another procedure, which is known 

Our suggested 

The problem of constraints  on 8is  not considered i n  the above discussion. 

I f  0 is  r e s t r i c t ed ,  then the approach w e  suggest is a modification of the  Taylor's 

Series approach t o  the unconstrained problem, with a mathematical programming 

ra ther  than a "steepest ascent" method for the  solution. The theory follows. 

Consider now the point e*' = [el*, . . . ,6 *] i n  the (constrained) 8- space. P 

W e  s h a l l  write a Taylor's expansion of f (X; 0) about t h i s  point,  neglecting 

terms of order 2 and higher. 

Form the equation 
P 
c 

j = l  
f (xi; 0) H f (xi; 0*) + (ej - ej*) f j  (x i ;  e*) , 
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where 

Then 

e - @ =  

, 

Notice that all the elements of A and B are known, depending only on the 

known X ' s  and the chosen 0*, 

Then U (X; e) A + B (e - e*) , and we wish to  minimize 

e'e [Y - A - B e  + Be*] ' [Y - A - B e  + Be*] 

= [(Y - A + B8*) - B8] ' 
= [(Y' - A' + 8*'B')-B'B'] 

[(Y - A + B0*) - BBI 

[(Y - A + BO*) - B0]  

= (Y' - A' + B*'B') (Y - A + Be*) - (Y' - A'O*'B') (B0) 

- 0 ' B  (Y - A + B e*) + O'B'B 8 

= K - [2(Y' - A' + O*'B') B8 -B'B'BO] , 
where K = (Y' - A' + e*' B' ) (Y - A + B8*) is a known constant. 

Then minimizing e'e is equivalent to  maximizing z, where 

z = [2 (Y' - A' + 0*'B')  B]e + e'( - B'B) 0. 
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If there are no constraints on 0, then this is the usual (references [l] and 

[21) Taylor's series approach, except the function z has been written as a quadra- 

tic form in 6, while usually a quadratic form in (6 - e*) is used in the references 

[l] and [2]. Our form of z is  important from a mathematical programming viewpoint, 

however. 3JOte that we could perhaps simplify the equation slightly by maximizing 

z/2 rather than z, but then the matrix 1/2 B'B rather than B'B would appear, and 

it was decided that the problem might be better handled if the form B'B is used. 

Let us now state what can be done, from a mathematical programming standpoint, 

with this problem if 8 is constrained. 

If B'B is positive definite, z = z (6) is a concave function. Suppose the 

constraints on 0 are of the form 

gr(6)s0 , r = 1 ,  2, ..., m 
> ei-0 , i = l ,  2, e.., p 

and that gr (0) is a convex function of 8 for all r. 

There is an algorithm available for the solution of the problem: maximize 
0 

z (e), where z (8) is a concave function, subject ot the conditions 

gr (e) 10 , r = 1 ,  2, ..., m 
and ei Z€I  , i = 1 ,  2, ..., p 
where the gr (6) are convex functions. 

[41 and offers a complete solution for this particular case. 

that the restriction on 6 is of a type that is  rather common; that is, very often 

the constraints are convex functions in 6, so that a rather broad class of problems 

may be solved using the algorithm- 

The algorithm is described in reference 

It should be noted 

The more restrictive requirement, for the Taylor's series approach, is that 

z (0; be a concave function (equivalently, that B'B be positive definite). 

Recall that B is determined by the choice of 8". 

satisfied the original constraints on 6, we are not assurred that this choice will 

force B'B to be positive definite; and in fact it does not. 

While e* was chosen so that it 

a 
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We now propose an approach to the solution of the problem which we believe 

We propose simply that we utilize the requirement of has much potential value. 

the algorithm, that z (8 )  be concave, as an additional restriction; not on 8 ,  but 

on our choice of W. In other words, we force z (e) to be concave by choosing as 

an initial vector 8 €9 such that B'B is positive definite. Equivalently, we have 

constructed a function z (e), which we must maximize, and we simply require it to 

have a form which possess a unique maximum; certainly a reasonable requirement. 

Then, if the constraints on 8 are convex, the algorithm of [4] may be used 

for a first iteration (a solution to the approximate problem). 

first estimate 6, which then becomes the choice of (3 for a second iteration, and 

so on. 

This yields a 

As one can see, a rather large class of problems may be solved using this 

procedure. 

it remains to prove that it will always converge to a solution of the original 

problem, or else to find a set of conditions that will guarantee convergence. 

Certainly, in the unrestricted case, such conditions are available (references 

[l] and [2]), leading us to believe that they also exist in the restricted case. 

The method is at present only in its first stages of development, as 

The Hartley-Hocking algorithm (reference [4]) has been recently programmed for 

computer by L. Claypool of the Institute of Statistics, Texas ASM University, and 

the program is now available for our use. 

AN EXAMPLE PROBLEM 

We will now demonstrate a problem of this type for which a solution was 

obtained. Since the use of the Hartley-Hocking algorithm is only feasible on the 

computer, the example is stated in such a way that a solution may be obtained with- 

out the algorithm, while still illustrating the utility of the Taylor approximation 

and the requirement of positive definiteness. 

more restrictive in that an equality constraint rather than an inequality was 

Actually, the problem is somewhat 



applied to 0. From a mathematical programming viewpoint, an equality is more 

0 restrictive than an inequality, but from a classical viewpoint it simplifies the 

problem somewhat. We expect, of course, that the cost estimation problems will 

involve inequalities. 

Let us now attempt to estimate the parameters for the function 

subject to the conditions 
4 
c e = 3 ,  

j J = 1  

e ? O , i = 1 , 2 , 3 , 4  , 
j 

and 

where we have the following observed data: 

i i X 

1 0 
2 1 
3 2 
4 3 
5 4 

y i 

1.25 
1.00 

.97 . C6 
1.05 

I 

Then 

First of all we ignore the constraints and find an "intuitive" solution (this was 

done by observing the function and making the conjecture that data point number 1 

might be the most accurate observation and that point number 5 would be most 

"sensitive"). 

e*, our initial vector. 

Vhat we are attempting to do, of course, is to arrive at a feasible 

Actually we simply look for a e* which satisfies E?-1 the 

conditions we impose and which does us the favor that the sum of squares of 
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deviations is small, suspecting that the 8 

minimum will be in the neighborhood of €3". 

for which the sum of squares is 

These considerations lead to 
0 

Adjusting 8 slightly, we arbitrarily decide to choose e* so that 

e* = pi 
4 
C e* Observe that 

satisfied by O*. 

- 3, and that 8 * 2 0 , so that the constraints on e are 
A simple calculation assures us that B'B is positive definite, 

j = 1  j j 

so we are ready to begin the first iteration. 

In the notation of the general problem, we find 

A' = (1.32, 1.03, -99 ,  1.07, 1.24) 

.58 
1.43 ::;! 12.31 15.51 2.17 

B'B = 15.51 23.98 1.01 
1.01 1.28 [ 5:;: 3.89 .58 

2[y' - A' + e*' B']B = (56.46, 78.44, 7.15, 15.29) . 
We may now form our function z (01, which is written out in full below. 

z (0) = 56.460~ + 78.44e2 + 7.15e3 + 15.298, 
2 2 2 2 - 12.318, - a w e 2  - 1.288~ - 1.438, 

- 3i.02e1e2 - 4.34e1e3 - 7.06ele, 
- 2.028~0~ - 7.78o2e,, - i.i6e3e4 

Since we have the equality constraint O1 + O2 + O3 + 8, = 3 , and 8* was 
definitely composed of positive elements, we simply ignore the constraint 8 

and attack the problem as a classical Lagrange - multiplier problem. 
solution satisfies 8 - 0, then the constraint is "inactive". If, however, it 

does not, then we may reconsider the problem either by the Hartley-Hocking 

> - 0 3 
If the 

> 
j 
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algorithm or as a quadratic programming problem. 

for solving the first iteration. 

In any event, a method exists 

0 
Fortunately, from the standpoint of hand calculations, the Lagrange-multiplier 

A 

approach works, yielding the vector 0' =I E-53, 1.17, .72, .581 which is now our 

estimate of 0'- 

Recall now that the vector A exhibits the values of the original function 

f (X2; 0) if a particular 8 is used, let A* denote the value of A when 8 - @k, let 

denote the value of A when 0 = 6 , and recall that Y is the vector of observed - 
y' S. 

Then 

while 

A*' = E1.32, 1.03, .99, 1.07, 1.241 

A' = E1.25, 1.04, -98, -99,  1.071 , 
a 

Y'  = [1.25, 1.00, -97,  .96, 1.051 
5 2 5  - ai) - 2  , or 6 given an improvement in It is apparent that c (yi - ai*) c ( ji 0 -1 i=l 

the sum of squares when compared with e. 
Specifically, 

while 

5 2 
( yi - ai*) 

6 2  

= .OS44 

= .0030 
i"l 

3 ( yi - ai) c i d  
, 

a significant decrease in the sum of squares. 

Notice that we are no lower talkinq about the approximatinn function, but 

are referring to the sum of squares of deviations of the observed from the calcu- 

"i lated y's when in Ole2 

compared with evaluating the same function when 

In other words, those sums of squares are in terms of the oripinal problem; 

minimize 

xi we let el = 9 , e2 = e; , e3 = +e: , e, = e;, 
+ e3e4 

A L A A 

= e1,e2 - O2 * e 3  = e3 8, = 
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Then certainly the use of the approximation has resulted in a significant 

decrease in the sum of squares we originally considered. 

we now begin the problem chosing 

We anticipate that if 
A 

as the point about which we make the Taylor's 

expansion, that a decrease in the sum of squares will again be obtained. 

we could either decide that .003 was acceptable as essentially a zero sum of 

Hence, 

squares, or else continue with the process until either zero or else no further 

improvement is obtained. 

As a point of interest, the same problem, with the same function and the 
4 
C same data, was considered when the linear constraint 

by the nonlinear (but convex) constraint C Bj = 2.5. The question was 

raised as to what effect would be obtained if a Taylor approximation was applied 

ej  = 3 was replaced 
4 2  j = 1  

1 - 1  

to the constraint as well as to the objective function. It was found that the 

same order of magnitude of reduction of the sum of squares was obtained! The 

purpose of that investigation vas to attempt to formulate the problem as a 

special type k n m  as a quadratic programsling problem, rather than using the 
a 

more general convex programming approach. 

ing conjectures, but it is felt that convex programming is the more fruitful 

This leads to some even more interest- 

avenue of approach to the general problem. 

PROPOSED FUTURE RESEARCH: CONCLUSION 

The areas of subsequent research on the general problem will be: 

(1) The investigation of the "restrictiveness" of the requirement that 

B'B be positive definite. 

(2) 

(3) 

Conditions for convergence of the iterations to the true solution. 

The possibility that the requirement of the positive definiteness of 

B'B be used as an additional set of constraints on 8 as well as e*. 

(This is currently being applied to a different but related problem in 

response-surface techniques and appears to be very promising there). 
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(4) The modification of Hartley's "Modified Gauss-Newton Method" to allow 

for constraints on 8. 

The removal of some or all of the approximations. 

original problem, but is extremely more difficult since, for one thing, 

it precludes the use of a compact matrix notation). 

A purely geometric approach; only for a special class of problems. 

(The analogy is the graphical solution of a set of simultaneous equa- 

(5) (This is really the 

(6) 

tions). 

This report indicates that progress has been made toward the solution of a 

restricted class of constrained estimation problems. 

here has proved promising and will be pursued. 

solved( see also the section of this report where the CER for CIT was derived) 

and results applicable to the cost model problem are expected. 

area( 3) above can be applied to the fitting of a cubic equation subject to the 

restriction that it be a monotonic increasing function (representing a cumulative 

distribution function - used in the subjective probability problem being investi- 
gated). 

cubic problem. 

suitable for incorporation into the Hartley-Hocking algorithm. 

The avenue of approach used 

Some specific problems have been 

Specifically, the 

0 

In fact, a theoretically sound solution has just been obtained for that 

This theory is now being used to construct a usable algorithm 
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INTRODUCTLON 

During the  review of Cost Estimating Relationship (CER) work as p a r t  of t he  

cost  research grant the recurring problem w a s  tha t  of interact ion among the 

f ac to r s  and the  resultant e f f ec t  upon the reproduction of the costs  used i n  

developing the or ig ina l  CW's. 

which w e r e  derived through the use of expert ise  t o  represent f i r s t  order effects .  

The higher order interact ions which were used w e r e  convenient and are not the 

only ones that could be used. 

It was desirable  t o  use ce r t a in  functional forms 

The important point is the  methodology developed. The cost  data,  the 

functional forms, the  variables,  and the number of parameters and higher order 

terms are minor points  compared t o  the concept and the methodology evolved i n  

t h i s  research. 

The reference t o  specific organizations is not critical o r  s ign i f icant  

@ since the  development is independent of the  work performed by those organiza- 

t ions.  

could be phrased i n  famil iar  terms. 

Their work was simply used as a da ta  base i n  order t ha t  t h e  discussion 
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ASSUMPTIONS 

The procedures and r e su l t s  presented i n  t h i s  report  are based on the  follow- 

assumptions: 

1. The lack of f i t  t o  the observed data  of the CER's developed by Booz- 

Allen is due to: 

(a) 

(b) 

The four variables selected as  predictor var iables  are val id;  i.e., 

that Booz-Allen and NASA are in agreement tha t  these four var iables  can 

be used t o  predict  subsystem cos ts  sa t i s fac tor i ly .  

The basic  premise of Booz-Allen; that the  functional form of the CW's 

involves natural logarithms of the  variables,  is preserved. 

There is some function of the four var iables  which represents subsystem 

cost ,  and which can be adequately approximated by a polynomial function 

i n  the  logaritbms of t he  variables. 

No consideration of "interaction" among the  predictor variables.  

Subjective weighting of the single-variable "predictors". 

2. 

3. 

4. 

A COST ESTIMATING RELATIONSHIP FOR CIT 

The procedure f o r  constructing a C I R  with a minimum of data  w i l l  be present- 

ed i n  the  form of an example, i.e., t h e  ac tua l  construction of the CER fo r  C I T  

f o r  subsystems (Structure-Primary). 

The basic  too l  for estimating parameters i n  the prescribed functions w i l l  

be be least-squares, and i n  f a c t  may be termed "constrained successive least- 

squares" for reasons which w i l l  become apparent. 

precludes estimating variances of the  parameter estimates, so the  c r i t e r ion  of 

v a l i d i t y  of the CER w i l l  be the "predictabil i ty" of the  observed cos ts  by the 

The minimum of data  avai lable  

@ CER. 
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The procedure follows: 

(1) Single-Variable Predictors 

W e  make the  following ident i f icat ions:  

XI = SW = Subsystem weight 

X2 = MG = Maximum mission g's 

Xg = ML = Module length 

X4 = NF = Number of f l i g h t  functions. 

e 

Suppose that CIT can be predicted by each individual var iab le  in the  form 

CITi = Ki In (Xi + l), i - 1, 2, 3, 4. 

Applying least-squares calculations to t he  data,  w e  obtain 

CITl  = 583 In (XI + 1) 

CIT2 = 1,768 I n  (X2 +1) 

CIT) = 1,592 In (X3 + 1) 

CIT, = 2,289 In (X, + 1) 

Keeping i n  mind that we are trying to  estimate, i n  thousands of do l la rs ,  

CIT, where 

CIT f o r  Gemini 

CIT f o r  Apollo C5S 
= CIT f o r  Apollo LEM , 

w e  write out  the  single-variable "predictors" as 

4,502 5,060 4,813 4,760 
CiT l  = 4,612 , CiT2 = b::id , CiT, = b:igd , C;T4 = b::;d 

5,357 

I 
fi 

0 

x = predicted cost  

0 = observed cost  
L 

A<&S 
2257 2728 9784 x1 

Figure 1. CITl:  Estimated by Weight Only .  
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The f igure  above indicates the form of the prediction equations as well as 

t h e i r  lack of f i t  t o  the observed data. 

Note that a simple subjective weighting of these 4 "predictors" w i l l  pro- 

duce an equation similar t o  that jetived by Booz-Allen. 

no weighting scheme that would r e s u l t  i n  an adequate prediction of CIT f o r  

Apollo CbS. 

(2) Two-Variable Predictors 

Note a l so  tha t  there  i s  

The closest  we could come t o  the  4,817 would be 5,029. 

We now propose t o  form a l l  possible predictors based on pa i r s  of the four 

var iables  [ there  vi11 be (;) = 6 such equations] by f i r s t  forming weighted sums 

of the  single-variable predictors and then adjusting by interaction-type terms 

of a quadratic form. The resu l t ing  equations w i l l  be second degree polynomials 

i n  the  two variables,  which begins the  construction of the  polynomial suggested 

i n  assumption (4). 

A sample calculation, using variables X l a n d  X 2  , follows. 

Form CIT = p CfT + (1 - p) CfTz , o L p S 1 and obtain the constrained 

least-squares estimate of p ( rest r ic ted by 6 S p S l ) .  This is  an at tempt  t o  

predict  CIT exactly by a weighted sum of CIT1 and CIT2. 

t ha t  it does not do so, but c a l l  t h i s  a new estimator CITt2 .  

We discover, however, 

Our caluulation 

yields  p = .78, so we have 

C I P 1 2 =  .78 C I T , +  .22 CIT,  , and 
.. 

CIT:2= 4,625 6::il . 
Now there  is an obvious discrepancy i n  the ac tua l  and predicted costs ,  

which we t r y  t o  account f o r  by interaction terms, hypothesizing t h a t  

CIT = C I T 1 2 =  .78 C I T 1 +  .22 C I T 2 +  a I n  
2 (X1+ 1 )  

+ b I n L  ( X 2 +  1) + c I n  (X1+ 1) I n  (X2+ 1). 

A least-squares solution fo r  t h e  parameters a, b, and c y ie lds  the two- 
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variable predictor 

= CITIfi+ 590 I n 2  (X1 + 1) + 5,754 In2 ( X 2 +  1) CIT 12 
0 

- 3,708 In (XI + 1) In ( X 2 +  1). 

Similar calculstiosls yield the other f ive  -variable predictors which, 

along with the one above, are shown below. 

C I T A =  .78 CIT1+ .22 CIT2 

CIT 1; - CIT 

CIT * - CIT, 

CIT 2f3 = CIT 
3 

CITF4= .03 CIT + .97 C I T 4  

CIT = CIT 

14 

2 

After adjusting for interactions, we  obtain the finaltwo-variable predictors: 

* + 590 1 n 2 ( x l +  1) + 5,754 I n 2  ( x 2 +  1) 
CIT 12 

CIT 12 = 

- 3,708 In (X1+ 1) I n  ( X 2 +  1). 

CIT 13 = CIT ;3+ 5,312 In  (X + 1) + 38,496 In (X + 1) 

- 28, 630 I n  (Xl+ 1) I n  (X3+ 1). 

CIT 14 = CIT * + 1,407 In  (X + 1) + 22,734 I n  (X ,++ 1) 14 

-11,330 In (X pl) I n  (X + 1). 

CIT23= CIT23+19,820 * l n 2 ( X 2 +  1) + 14,975 l n 2 ( X 3 +  1) 

- 34,559 In (X2+ 1) I n  (X3+ 1). 

CIT 2 4 =  CIT 22-  38,798 In (X 2 +  1) - 56,646 I n  (X ,++ 1) 
+ 94,605 In (X 2 +  1) In (X 4+ 1). 

CIT 3 4 =  CIT t4- 14,534 In (X 3 +  1) - 28,912 I n  (X 4+ 1) 

+ 41,058 In (X 3 +  1) I n  (X 4+ 1). 

The "predictions" of CIT given by these are: 
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which are each t rying t o  predict  CIT = pig 

5 ,oo 

4,000 

x = predicted cost  

GJ= observed cost 

/ 
Figure 2. C1Tl4: Estimated by Weight and Number of x4 

Flight Functions 

Any one of these is  a f a i r l y  good predictor of CIT. The f igure  i l l u s t r a t e s  

the nature of the  surface on which predicted costs,  as a function of only two 

variables,  w i l l  l ie .  However, we would l i k e  an equation which t r i e s toaccoun t  f o r  

the contribution of a l l  four variables,  s ince it has been decieed [assumption (2)] 

t h a t  each is important as a predictor.  

(3) Three-Variable Predictors 

Continuing the same approach, we form weighted stms of the  two-variable pre- 

dictors .  Here the weighting r e s t r i c t ions  pose in te res t ing  but simple non-linear 

programming problems, s ince we have problems of the  type: Minimize 

subject t o  the r e s t r i c t ions  o p1 1, o p p  11, o p 1  + p2 1. Fortunately 

the problem has a simple geometric solution which can be converted t o  a set 
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of l og ica l  h s t r u c t i o n s  tha t  can be handled by a computer without recourse t o  

convex programming algorithms. These sample calculat ions w e r e  done on B desk 
0 

ca lcu la tor  to get  a "feel" for the  problem; but fu ture  CER's are expected to 

come from a s ingle  computer program incorporating the  above procedures. 

The results of the calculat ions are: 

CIT * = .ll C I T 1 3 +  .89 C I T 2 3  

C I T 1 2 t  = .91 CIT1,  + .09 C I T 2 4  

C I T 1 3 t  = CIT1,+ 

CIT * = .84 C I T 2 3  + .13 CIT24  + .03 CIT 34 . 

1 2 3  

234  

A t  t h i s  s tage an element of subject ivi ty  en ters  i n t o  the problem; t h a t  of 

adjust ing f o r  three-factor interactions.  The data  are not suf f ic ien t  t o  allow 

a l l  possible three-factor interactions t o  be used, so it was  decided t o  use only 

(In13 terms. The f i n a l  three-variable predictors  are then: 

CIT 

'IT 124 124 

C I T 1 3 4  = CITl$4+ ,0193 in3  (XI + 1) - 2.1066 ln3 ( X 3  + 1) + 3.9616 i n 3  (X + I ) .  

CIT,,, = CIT2;, 

= CIT * - .0274 l n 3  (X + 1)  + .0674 l n 3  (X + 1) + .5079 l n 3  (X + 1). 

= CIT * + .0281 l n 3  (Xl  + 1) - .8513 1x13 (X2 + 1) - 1.0134 l n 3  (X4 + 1). 
0 1 2 3  1 2 3  1 2 3 

4 

These yield the  "predictions" : 

5 , 016 5,017 5,017 5,016 
= 1 , 7 3 4  4 , 817 , C f 1 2 , +  = [4,73j 4,816 , C i T 1 3 4  = 1 , 7 3 j  4,813 , C i T 2 3 4  = [*,730], 4,817 

which hardly deviate  at a l l  from the observations. 

(4) Four-Variable Predictor 

A t  this s tage it was observed that  a correct  weighting of these predictors 

= CIT234 , which would ignore X must y ie ld  CIT1234  

t o  an intr iguing conjecture (ignore weight?), but would not seem to  make sense 

completely. This could lead 
1 

pract ical ly .  

of reasoning t o  completion, would be to weight the  hardly distinguishable three- 

var iab le  predictors  equally, and make a f i n a l  four-factor in te rac t ion  adjustment. 

It would Seem that t h e  more log ica l  approach, t o  carry our l i n e  

0 
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This yiclds 

C I T  

and finally 

+ CIT + CIT 1 , = .25 [CIT123 + CIT12,, 
2 34 4 134 

= CIT * - .0024 In (X1 + 1) In (X + 1) In (X + 1) In (X + 1) , 
‘IT1234 1234 2 3 4 

where 
CIT A = py 

1234 

(5) The CER for CIT 

Performing the arithmetic of combining all the previous results exhibits 

the CER in terms of the original variables. 

= { 2.9172 In (X + 1) + 732.32 In (X + 1) + 1,232.3 In (Xb + 1) 
‘IT1234 2 3 

+ 817.92 In ’(XI + 1) + 6,438.26 In 2(X2 + 1) 
+ 7,426.32 In 2(X3 + 1) + 7,523.11 In 2(X4 + 1) 
- 787.33 In (Xl + 1) In (X3 + 1) 
- 5,410.08 In (X1 + 1) In (X4 + 1) 
- 14,946.77 In (X2 + 1) In (X3 + 1) 
+ 5,203.28 In (X2 + 1) In (X4 + 1) 
+ 307.94 In (X3 + 1) ln (X4 + 1) 1 

+ .0050 In 3(X1 + 1) - .1960 In 3(% + 1) - .3997 In 3(X3 + I) 
+ .7371 In 3(\ + 1) 
- ,0024 In (l$ + 1) In (5 + 1) In (X3 + 1) In (X4 + 1) 

(6) Discussion of CER and Recommendations 

Observe that the part of the C W  set off in braces ( is a quadratic 

form in the four variables, and represents an approximation of only second degree 

to the theoretical (hypothesized) function which actually yields CIT for any 

combination of the four variables. Ignoring the higher degree terms completely 
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yields  the  prediction 

tha t  is, the  higher degree terms do not m a k e  a la rge  contribution f o r  t h i s  range 

of the  data. 

be near t h e  range used i n  deriving the CER, then it may be expected tha t  the 

quadratic form only would be a f a i r l y  good "predictor". 

I f  the expected range of fu ture  input var iable  X X2, X 3 ,  X 4 i s  t o  
1' --- 

Such an observation allows us  t o  make the  statement that the predictor is  

"nice" in  the  respect that it leads us to no obviously contradictory cost  pre- 

d ic t ions  such as negative cost ,  maximum cost ,  etc. 

I f  the  quadratic form (ignoring terms of degree 3 and higher i n  the CER) is 

investigated fo r  maxima and minima, the r e s u l t  is tha t  it has a min- where 

X r + l =  e ~ p  [- 2 9 3 1 ~ 1  
X 2 +  1 e e ~ p  [- 84) <1 2 

X 4 +  1 e ~ p  [- 741 < I  x ,  < o  

f :  < O  

X 3 +  1 exp [- 981 X 3 . < 0  9 

I which is outside the range of feasible  data. 

The conclusion is that t h e  res t r ic ted  CER has no maximun; within the feas ib le  

range (posi t ive X ' s )  of the  data, and the poss ib i l i ty  of a "negative cost" appears 

t o  exist only i n  the neighborhood of X I =  0 ,  X 2 =  0 ,  X 3 -  0 ,  X 

no in t e re s t  (except that cost  i n  zero there). 

= 0 ,  a point of 
4 

The f u l l  ( a l l  terms) CER has been investigated throughout the anticipated 

range of input var iables  by simply programning the  equation and generating cost  

predictions f o r  various combination of t he  variables.  

A discussion of the  program and reasons f o r  i t s  use w i l l  be found i n  another 

sect ion of t h i s  report. 

t ha t  investigation. 

contour representation of costs ,  where the  cos t s  are indicated within the f l ags  

drawn a t  various points representing inputs (X 

The f igure below represents graphically the r e s u l t s  of 

It is a three-dimensioned (holdiag X,+fixed a t  X 4 =  8) 

I) 5 , J 1. 
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Figure 3. CITIz3@ : Complete CER, Fixed at X4 = 8. 

While the figure indicates that no results contrary to common sense were 

obtained, the recommendation is that the quadratic form in the CER appears to be 

an adequate predictor for CIT for points not too discrepant from the range of 

data used in the development of the CER. This would essentially maintain Booz- 

Allen's original four variables and logarithmic form of the function, while in- 

creasing the degree of the polynmialby =. 
(7) Comments on the Number of Terms in the CER 

The CER is a fourth degree polynomial form in four variables and has 17 

terms, arising from the nature of the method used (constrained least-squares) and a 
-10- 



from the minimum of data tha t  w a s  available f o r  constructing the function. 

An analogy can be made with the standard statist ical  procedure of finding 

the  degree of a polynomial ( in one variable) tha t  adequately describes a set of 

data  when the  ac tua l  functional form is unknown. 

function is f i r s t  f i t t e d ,  tes ted f o r  significance of the coeff ic ient  of the f i r s t  

degree term, and, i f  s ignif icant ,  a polynomial of second degree is f i t t e d ,  

tes ted,  and so on u n t i l  no significance is obtained fo r  the  coeff ic ient  of the  

term of highest degree. 

In that  procedure, a l i nea r  

The method proposed i n  t h i s  report u t i l i z e s  no significance tests because 

of the lack of avai lable  data. 

the polynomial t o  be used is simply t o  continue u n t i l  the  data  have been fit 

essen t i a l ly  exactly and then say tha t ,  s ince the polynomial describes the data  

perfect ly ,  we have an adequate f i t .  

a f t e r  reaching the s tage of a second degree polynomial a decision had t o  be made 

as t o  what kind of th i rd  degree terms would be used, these being 20 di f fe ren t  ones 

t o  choose from. Likewise for the fourth degree terms, where there  a r e  29 choices. 

These decisions were necessarily subjective and w e r e  based only on using terms 

which improved the  f i t .  

be an adequate predictor (it required no such decisions). 

Our c r i t e r ion  fo r  deciding upon the degree of 

However, because of the few data points, 

Hence the recommendation tha t  the  quadiatic form might 

It should be noted that if it were decided tha t  a fourth degree polynomial 

i n  the  4 var iables  is desired, and that we should f i t  a peneral  (all  possible 

t e r m s )  fourth degree polynomial, then 63 data  points would be required i f  standard 

least-squares is t o  be used, s ince such a polynomial w i l l  have 63 d i f fe ren t  teras. 

Even i f  that much data  is available, t h e  estimation task is  formidable, requiring 

the solut ion of a system of 63 simultaneous equations i n  63 un2cnowns! In such a 

s i tua t ion  it  is usually decided t o  attempt t o  describe the  da ta  with a quadratic 

form i n  the variables.  0 This general form would contain 14 terms, however, 60 
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standard least-squares cannot be used even here, s ince we do not have that much 

0 data. 

USE OF THE METHOD FOR OTHER CER'S 

It appears reasonable t o  say that the  method used i n  constructing CIT 
1234 

would work f o r  the other desired CER's, given that  the Original assumptions 

are acceptable to NASA. 

As an example, a sample two-variable predictor f o r  CDE w a s  calculated, and 

yielded 

CDE12 = 11,019 I n  (% + 1)  - 53,516 I n  

- 550,805 In  2(% + 1 )  

+ 345,786 In  (Xl + 1) I n  (X2 + 1) , 

(3 + 1) 

so t ha t  

while the  observation ac tua l ly  made was 

leading us  t o  expect the  same "goodness of f i t "  for a CER f o r  CDE based on the 

same method. 

The procedure w i l l  be programmed f o r  computer and, especially if the  

quadratic form only is desired, should be a f a i r l y  simple program t o  write ( the 

logic  f o r  the  non-linear programming aspect would be qui te  simple). As soon as 

t h i s  is done, a l l  the CER's could be constructed, investigated fo r  "reasonable- 

ness", and submitted t o  NASA. 

It is f e l t  worthwhile t o  re-emphasize t h a t  the  use of only the quadratic 

form (a) should lead t o  CER's with good properties and (b) removes the element 

of subjec t iv i ty  (apart from the or iginal  assumptions) because no decisions as 

t o  type of three and four fac tor  interact ion need be made. 0 
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USE OF OTHER FUNCTIONAL FORMS: CONCLUSION 

0 It is of course apparent that the method depends on the  assmptions made a t  

the beginning of this sect ion of the  report. It must be pointed out that, 

given a "free hand" as t o  the form of the  functions used, we may a r r ive  a t  

functions which predict  the observed points closely, and could do so with only 

one variable.  

For example, we could form 

= 67,403 X - 6,416 Xt + 155 X3 , 
cDE 3 3 3 

yielding 

A 

CDE3 = 

This gives a f a i r l y  good f i t ,  and is simply a cubic equation forced through 

X3 = 0 and involving only the s ingle  var iab le  X3 . 
It is obvious that an infinity of such functions might be hypothesized fo r  

any CER; each doing a good job of "prediction". 

The objections t o  this approach are (a) the problem would have as many 

"solutions" as there  were people t o  t ry  t o  solve it, and (b) w e  would be basing 

the form of the function on the  configuration of the da ta  ra ther  than on past 

experience and consideration of the nature of the cos ts  themselves; a dangerous 

prac t ice  at best. 

By r e s t r i c t i n g  ourselves to a set of assumptions t h a t  can be a t  least 

p a r t i a l l y  ju s t i f i ed  by experience, we have a r a t iona l  foundation on which t o  

build our model. 
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COMPUTERIZED EVALUATION OF COST ESTIMATING RELATIONSHIPS 0 
The purpose of the Computer Program is t o  evaluated the Cost Estimating 

Relationships of the form discussed below. 

cussed is for  the i n i t i a l  tooling cost. 

d i c t ion  equation are xl, subsystem weight; x2, maximum g's; x 

and x4, the number of f l i g h t  functions. 

The spec i f ic  CER t h a t  w i l l  be d is -  

In t h i s  case the variable i n  the pre- 

module length; 
3' 

The predictor or CER developed for the i n i t i a l  tooling cost  is: 

ITC (xis x x x )= 2.9172 In (x + 1) + 732.32 In (x + 1); 1,232.3 ln(x + 1) 2' 3, 4 3 4 

+ 8 1 7 . ~  ~ n ? : ~ ~ +  1) +: 6,43g.26 ~n 2(x2+ r-j . 

2 2 + 7,426.32 In (x3+ 1) + 7,523.11 In (x4+ 1) 

- 7,87.33 In (x1+ 1) In  (x3 + 1) - 5,410.08 In  (xl + 1). 

- I n  (x,+;+ 1) - 14,946.77 In  (5 + 1)  In (x3 + 1) 

+ 5,203.28 In (5 + 1)  I n  (x4 + 1) + 307.94 I n  (x + 1) -  
3 

3 * I n  (q, + 1) + .0050 In  (5 + 1) - 0.1960 In (x2 + 1) 
3 3 ( ~ 3  + 1) + .7371 In - .3997 In 

- .0024 I n  (3 + 1)  In  (5 + 1) In (x3 + 1) In  (x 

(x,, + 1) 

+ 1) 
Consideratiin was given t o  evaluating the ITC predictor fo r  s ta t ionary points 

4 

analytically.  

t o  In (x 

zero, and solving fo r  the desired variables (xl, x2, x3, and x,). 

This approach t o  the problem leads t o  d i f f e ren t i a t ing  with resgect 

+ l), i = 1,2,3,4 and se t t ing  each of the four equations equal t o  
i 

The system of equation resul t ing from taking the p a r t i a l  der ivat ive and 

s e t t i n g  them equal t o  zero becomes: 

~(ITC) . P 1635.84 I n  (xl + 1) - 787.33 In  (x + 1) - 5,410.08 In (X + 1) 
3 4 2 

a[Idx1+ I)] + .015 In  (xl+ 1) - 0.0024 In  (x + 1)  In (x + 1)  In  (x4 + 1) = 0 
2 3 

= 2.9172 + 12,876.52 I n  (x, + 1) - 14,946.77 In (x + 1) 
3 a(IW 

abn(x2+ 111 + 5,203.28 I n  (x + 1) - -5880 ln2 (x2 + 1)  - 0,0024 In (xl + 1)- 
4 

a 
'.ln (x3-+ 1) In (x4 + 1) = o 
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- 1,1991 l n 2  (x3 + 1) - 0.0024 In (x, + 1) In (x2 + 1) I n  (x4 + 1)=O 

a (ITC) = 1,232.3 + 15,046.22 I n  (x4 + 1)  - 5,410.08 In (x, + 1) 

a[ln(x4+ 111 + 5,203.28 ln (x + 1) + 307.94 I n  (x + 1) + 2.2113 ln2 (x4 + 1 )  

- 0.0024 ln (xl + 1) In (x, + 1) In (x3 + 1) - 0 
2 3 

An analytical solut ion t o  t h i s  system of four equations f o r  s ta t ionary 

(meximum, m.€niwmO, or saddle) points was not readi ly  apparent. 

an iterative solut ion t o  the system of equations was necessary. 

For t h i s  reason 

A FORTRAN program was  wr i t ten  t o  examine the CER, taking advantage of the 

computers speed and accuracy, f o r  any unreasonable behavior. This technique 

of examining the CER allowed many more data points t o  be examined than otherwise 

would have been possible. 

0 The FORTRAN program was designed such tha t  a l l  coeff ic ients  and data were 

loaded on data cards (Standard IRM 5081, 80 column cards). See Figure 2. The 

data cards, supplying the values of the coeff ic ients  used i n  the CER, u t i l i z e  

a l l  eighty columns of two cards and ten columns of a th i rd  card. The second 

type of data card used u t i l i z e s  the f i r s t  fo r ty  columns t o  supply the values of 

x 

including seventy-two (72) may be used fo r  comment or marking of the data as 

i = 1,2,3,4 (subsystem weight, etc.). C o l u m n s  sixty-one (61) thru and 
i’ 

t o  the type of spacecraft (Gemini, Apollo, etc.). 

The program w a s  designed for  maximum u t i l i z a t i o n  of the memory of the IBM 

7094 so t h a t  the program, if necessary, can be expanded t o  make a l l  calculations 

necessary i n  the development of the CER. 

The output of the FORTRAN program lists, first,  the values of the coeff ic ients  

Secondarily, t h e  program l is ts  the data (x,, x2, x3, x4) used used i n  the CER. 

f o r  each i t e r a t ion  adjacent t o  the value fo r  the ITC obtained using t h e  data. 
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The l i s t i n g  of the data  used fo r  each value of the CER f a c i l i t a t e s  the in- 

vest igat ion by helping t o  eliminate error  i n  p lo t t ing  the points. 

It can be seen from the flow chart of the program tha t  other advantages 

were obtained by the use and design of the computer program. 

proves useful is t h a t  higher order terms of the predictor can eas i ly  be deleted 

if the quadratic form is an adaquate predictor of costs. 

One feature tha t  

The a b i l i t y  of delet ion without changing the e n t i r e  program contributes 

t o  the fact tha t  the program can eas i ly  be used t o  compare the predictor based 

on lower degree terms t o  the predictor based on the complete predictor equation. 

The data used t o  evaluate the CER was such tha t  the predictor could be 

examined over a l l  possible combinations of available and theo r i t i ca l  data. The 

t h e o r i t i c a l  data was designed such that it progressed i n  logical  and convenient 

increments from the lowest available data values t o  approximately two or three 

times the highest available data values. 

The CEB was then calculated f o r  each of these data sets (xl, x2, x3 3 )  

and hand plotted i n  a three dimensional contour coordinate system fo r  observation. 

The section on "Development of a Cost Estimating Relationship... 

i l l u s t r a t i o n  of these resul ts .  

I t  contains an 

This type of program should be used as a checkout procedure on each CER 

and/or combination of CW's. 

would call  a t ten t ion  t o  the r e l i a b i l i t y  of the CER and the independence of the 

CER's when grouped within a model. 

Checking each mathematical model i n  t h i s  manner 

The inputjoutput and program are  an addendum t o  t h i s  sect ion of the report. 
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DPNP,hZLC PROGRAMMING ALGORITfIM FOR DETERMINING 'BEST FIT' 

The problem of weighting individual predictors  of t o t a l  subsystem cost  i n  

order t o  combine predictors of the same value i n t o  a s ingle  predictor is  one 

which can be approached by more than one method, One method which was  reviewed 

as pa r t  of the  services performed by Texas A&M was  t h a t  of subjectively weighting 

the individual predictors  which contained a s ingle  independent var iable  according 

t o  the importance t h a t  var iable  was f e l t  t o  have on the  t o t a l  cost  function being 

considered. This par t icu lar  approach did not produce consis tent ly  good r e su l t s  

and did not present a quant i ta t ive base f o r  making decisions as to whether the  

individual predictors  w e r e  a t  f a u l t  or the  weighting scheme being used. 

fore ,  by expanding the  problem t o  (1) one of having any number of terms tha t  

There- 

w e r e  to be combined i n t o  a s ing le  function under the constraint  t h a t  the  sum 

of the  weights used should approximate uni ty  (2) one being fur ther  r e s t r i c t ed  

by a small number of data  points (which precipi ta ted the  or ig ina l  problem of 

only using a s ingle  var iable  predictor f o r  a given type of function and still 

have some degrees of freedom associated with the e r ro r  sum of squares) (3) one 

having an inherent f l e x i b i l i t y  such that consecutive last  terms could be deleted 

from consideration and still  provide the optimum solut ion without recomputation, 

(4) providing a built- in sens i t i v i ty  whereby the  e f f e c t  of var ia t ion  i n  the 

weightings could be evaluated and (5) where the  minimum sum of squares c r i t e r i a  

could be used as a bas is  f o r  determining optimum weighting of the  terms. 

In the  dynamic programming terminology the  s tages  correspond to  the  terms 

which are being combined; therefore,  it is  necessary t o  develop the recursive 

r e l a t ion  of dynamic programming. For example i f  t he  ac tua l  values are yi and 

the individual predicted values f o r  t h e  f i r s t  term is xli, then the objective is 
n CI 

t o  select some value B1 such t h a t  t he  function - f,(e) = C '(el x l j  - y i l L  is 
i = l  0 
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minimized subject t o  0 

f o r  a two-term equation is t o  determine 

e l  f 8. Using t h i s  same notat ion scheme, the objective 

0 
min n 2 f2(e) = o e, e [ c (el xli + e,x2i - yi) 1 

i = 1  

2 2 2  2 2  mh< n 
0 - e2 e [ c (e1 xli + e 2 ~ 2 i  + yi + 2e1 xlie2 x2i 

i = l  

n 

131 
+ 2 c elxlie2 x~~ + fp  -e,)]. 

0 It is probably only of i n t e r e s t  a t  t h i s  point,  but should be c l a r i f i e d  fo r  

the  next s tage of the computation is tha t  the values of elXli are fixed, based 

upcn the value el takes on i n  order t o  optimize f l ( e  -e2)  i.e., some value of 

0 01 =-(e' -e2 )  which minimizes the  e r ro r  sum of squares i n  s tage 1. 

i n  order t o  denote the fixed values of t h e  previous stage as being d i f f e ren t  

from the var iable  values i n  the  cross  product term l e t  

a l so  be pointed out t h a t  

Therefore, 

z2i = elxli . It should 

Il 2 
is simply a constant. i 5 1  Ji 

n + rl(e -e2)] 
+ i 1 = 2 i  e2*2i 

It would be possible to write the  general recursive relat ionship a t  t h i s  point,  

however, there  is a s u b t l e p o i n t  t h a t  should be i l l u s t r a t ed .  This w i l l  be . 

accomplished by considering the th i rd  stage or t h i r d  term t o  be introduced i n t o  

the model. 
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n 
i = 1  

+ 2  (81x1 i +9,x,i 1 + f,@ - 03) 1 

The point t ha t  should be noted is that (Blxli +flp2i) is fixed f o r  a given 

( 8 -e3) and t h i s  is the  computed values of the model through the previous s tage 

which minimized the  e r ro r  sum of squares f o r  the specified sum of weights 

( e ,  +e2). 

(e,xli +e x 

Note, ( e  - e3) = (e1 + e2). Therefore, i f  these fixed values of 

) are represented as z 3 i  = (e1xli + € 3 ~ ~ ~  ) then; 
2 21 

This type of dynamic programming formulation requires  t h a t  n addi t ional  values of 

z 

f o r  a l l  previous stages  only the preceding one s ince they are cumulative in nature. 

be carr ied from stage t o  stage. It does not require  t h a t  they be retained si  

Then S 
i =  1, 2, ..., n =si = ejxjl ' 

j = 1  
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for the ccmputations of stage s .  The n stage recursive relation can be written 

m i n  .. n 

In order to compute these values by standard methods it will be necessary 

to make 8 discrete. 

to obtain a satisfactory weighting of the terms. 

dimensional allocation problem with minor modifications. 

The increments can be refined to any level necessary in order 

This is essentially a one 

n 
I 

Normally it would be expected that c 
j = l  

g1 = 1 would be the constraint on 

9; however, due to the built-in sensitivity of dynamic programming it may be 

desirable to constrain 8 to a sum greater than 1 in order to determine if certain 

downward biases may be contained in the original individual terms. 

programming solution will provide solutions for all values of 6. 

will also provide solutions for all arrangements of consecutive groupings of 

terms with the last term being deleted each time. 

to their suspected importance with respect to the model being constructed, the 

contribution of each added term can be considered for deletion in the reverse 

order in which it entered into the calculations. 

The dynamic 

Further, it 

0 
By ordering the terms according 

A computer program can be provided for this algorithm if it is considered 

to be of more than passing interest. 
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INlRODUCTION 

Various methods have been used to  estimate the t o t a l  cost  of space programs 

a t  various points during the l i f e  of the program. 

are a normal part of major programs, the estimates change with time and the 

amount of information available. It is generally considered t h a t  the t o t a l  

program cost  estimates approach the  ac tua l  cos t  as the  program nears the end. 

There have been numerous studies t o  determine the reasons and appropriate ad- 

justments tha t  could be made t o  estimate costs. This study was limited t o  the 

u t i l i z a t i o n  of Gemini data fo r  the extrapolation of Apollo data. However, the 

general problem of select ing a cost  d i s t r ibu t ion  function over t i m e  from among 

many a s  a best f i t  t o  a partial cost  d i s t r ibu t ion ,  and the use of the one 

selected t o  extrapolate the p a r t i a l  costs  t o  a completed cost  was considered. 

The hypothesis was  t ha t  a subsystem of a completed project  would follow 

Due t o  various changes tha t  

the percent t i m e  vs. percent cost curve of some subsystem of a previously 

Completed project. The subsystems of the uncompleted project would not nec- 

e s s a r i l y  follow t h e  curve of the same subsystem of the completed project be- 

cause of such fac tors  as the amount of pa ra l l e l  development, technological 

d i f f cu l t i e s ,  program changes and other similar reasons. Therefore, the choice 

of the best  f i t t i n g  curve should be made from among a "population" of s ignif-  

i can t ly  d i f f e ren t  curves of subsystems of completed projects. Then the curve 

which approximates the available data the c loses t  should be used t o  estimate 

the run-out cost  . 

a 

There are three basic phases t o  the estimation of run-out costs  i n  t h i s  

method : 

(1) The determination of a polynomial t o  f i t  each "population" curve. 

(2) The determination of the  best  f i t t i n g  curve among the population 
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to the uncompleted subsystem data and 

(3) The determination of the run-out costs. 

on the flow chart of Figure 1. 

These phases are shown 
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DETERMINE POLYNOMIAL 

FOR EACH OF THE SIGNIFICANTLY DIFFERENT 
COMPLETZD SUBSYSTEM CURVES, DETERMINE 

A THIRD DEGREE POLYNOMIAL TfIAT BEST FITS 
THE AVAILABLE DATA POINTS 

DETERMINE BEST FITTING CURVE 

FOR EACH UNCOMPLETED SUBSYSTEM, 
DETERMINE THE BEST F I T  OF THE AVAILABLE 
DATA POINlTS TO EACH COMPLETED SUBSYSTEM 

CURVE AM) CHOOSkTHE ONE THAT BEST FITS 

DETERMINE RUN-OUT COST - 
USING THE BEST FITTING CURVE, ANY 

COST DATA POINT CAN BE USED TO 
DETERMINE THE RUN-OUT COST. 

FIGURE 1, FLOW CHART OF RUN-OUT COST ESTIMATION PROCESS 

-3- 



DETERMINE POLYNOMIAL 

The data of a completed project which was avai lahls  t o  Texas A&M was the 

This data consisted of four percent t i m e  VS. percient cost  curves of Gemini. 

intermediate points through which a smooth curye had been drawn (NASA/PISC data). 

To obtain an equation of the different  curves, a th i rd  degree polynomial 

The general form of was  determined t o  be the best  general f i t  t o  the curves, 

the equation is: 

2 3 f (x )  = A x  + B x  + c x  
To determine the coeff ic ients  of t h i s  equation, the method of l e a s t  squares 

was used. A set of four simultaneous normal equations, involving summations of 

the decimal percent t i m e  raised t o  powers from zero t o  six and the same .s~~IB- 

t ions except being multiplied by percent cos t  with the powers ranging f r o m  zero 

t o  three,  is solved t o  give the desired coefficients.  The more data points . 

t ha t  are used i n  the computations, the b e t t e r  the f i t  is expected t o  be. The 

degree of the polynomial could be increased i f  desired in order t o  obtain a .  

st i l l  be t t e r  f i t ;  however, due to the nature of the real world problem, tests 

should be made i n  order t o  avoid inconsistent changes i n  the value of the tangent, 

This technique was used t o  determine t h e  equation and was found t o  give 

sa t i s fac tory  resu l t s ,  

A method of determining an equation f o r  all the curves had been found, but 

now the problem of which curves w e r e  s ign i f ica tn ly  d i f f e ren t  needed t o  be re-  

solved, Since the curves go through the points (0,O) and (1,1), the curves can 

be considered as cumulative d is t r ibu t ion  curves. Therefore, it is possible 

t o  d i f f e ren t i a t e  th i rd  degree polynomials t o  obtain quadratic density functians. 

I f  it i s  assumed t h a t  the third degree (or any degree f o r  tha t  matter) 

adequately describes the d is t r ibu t ion  function, then by using the method of * 
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moments a Beta density can be f i t t e d  t o  the polynomial. 

cubic i s  obtained of the form Y = AX + BX 
For example, i f  tho 

+ CX3 which w i l l  be the case ff 
0 

the curve is forced through (0,O) and (1 , l )  then the der ivat ive is  

. Y' ,S A + 2BX + 3CX2 

(Note: A, B and C are known constants determined by the l ea s t  squares f i t ) .  The 

f i r s t  moment w i l l  be 

E(x) = -.,'(AX + 2BX2+ 3CX3 dx 
= Ax2+2Bx  3 + 3 c x  1 

-T3 I, - - 
2 3 

= A + 2 B + 3 C  

2 3  4 
Similarly 

E(x2) = / i ( A X 2 +  2BX3+ 3CX4) dx 
0 

= A +  2 B + 3 C  - - -  
3 4  5 

The corresponding f i r s t  and second moments about the or ig in  for the Beta 0 
densi ty  can be shown t o  be a + 1 and (a + 2) (a + 1 )  respectively. Then 

a+ $+ 2 (a% + 3 ) ( a + ~  + 2) 

by solving two equations fo r  two unknowns, the two parameters of the Beta density 

(which uniquely describes the Beta) may be determined. 

However, it should be pointed out t h a t  the solut ion of t h i s  system of equa- 

t ions w i l l  r e s u l t  i n  two pa i rs  of a ' s  and B's. 

infeasible  due t o  the r e s t r i c t i o n  ona and 8 a s  parameters of the Beta density 

i.e., a ,  p- 1. 

a s  t o  which function best  describes h i s  data. 

Hopefully, one pair  w i l l  be 

I f  t h i s  is not the case, then the analyst  must make a decision 

However, it should be pointed out t h a t  the f i r s t  der ivat ive of a polynomial 

1) t h a t  passes through ( 0 , O )  and (1,l) w i l l  qual i fy  as a probabili ty density 
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function, 

another sect ion of t h i s  report  is that  the sum of the coeff ic ients  of the poly- 

nomial used as t h e  d i s t r ibu t ion  function w i l l  be equal t o  unity. 

example given above, A + B + C = 1, 

It is  of no par t icular  consequence, except the connection with * 
I n  terms of the  

For the spec i f ic  problem of runout cos ts  of Apollo, the Beta density is  not 

a cri t ical  area; however, there was an addi t ional  problem of distinguishing which 

of the cost  d i s t r ibu t ions  are s ignif icant ly  d i f fe ren t ,  This i s  not a par t icu lar ly  

d i f f i c u l t  problem i f  the number of samples and conditions of independence i n  these 

samples are m e t ;  however, due t o  the nature of the data t h i s  i s  not a s t ra ight -  

forward application of s t a t i s t i c a l  inference type of test of significance. 

Research is  continuing i n  t h i s  area. 

DETERMINE BEST FITTING GEMINI CURVE FOR APOLU) DATA 

0 The data available fo r  an uncompleted subsystem is given a s  a cost  a a 

ce r t a in  time (?IASA/%C data). From the data ,  the percent time of the project 

is  known since the  project length i s  known. What is  needed is  the percent cost  

each of the points represent. 

The data points must be tested against each s ignif icant ly  d i f fe ren t  completed 

system curve i n  such a way a s  t o  ge t  the best  f i t  and then choose the one curve 

which gives the best  f i t .  

Since the r a t i o s  of the cost  data points a re  known, it is possible t o  place 

the f i r s t  intermediate point a t  a percent cost  of X. 

points of an uncompleted subsystem, the n-1 remaining data points are a t  a 

height 

With n intermediate data 

%XI k3X,. . . , G X  (see Figure 2 1. 

Using the method of l ea s t  squares t o  provide the best  f i t ,  
- - - 

(1) (Y,-X)’ + (Y2-k2X)’ + ... + (Yn-kX)2 = minimum 
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Figure 2. Method of Cost Ratio Determination 
- 

Y2‘ ..., Yn are the values of the percent cost of the completed 

subsystem at the percent time of the data points of the uncompleted subsystem, 

1’ 
Where Y 

these values are obtained f r o m  the derived polynomials of the completed subsystem. 

Taking the derivative o f  (1) and setting it equal to zero to obtain the 

minimum, (2) 2(Y1-X) (-1) + 2 (Y2- k,X) (-k2) + 2 (Y3- kgX) (-k3) + ... 
+ 2 (Yn-knX) (-kn) = 0 

Solving for X; 

1 + k22 + k32 + ... + kn2 
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By knowing the value of X, t h e  value of the sum of the  squares of (I) can be 

determined t o  obtain a measure of f i t  for  the uncompleted subsystem t o  one of the 

completed subsystem curves. 

curves gives a measure of f i t  f o r  each of these curves. 

Repeating t h i s  with each of the  completed subsystem 

By using t h i s  measure of f i t ,  the best  f i t t i n g  curve can be determined by 

choosing the curve which had a minimum value fo r  the sum of the squares. 

DETERMINE RUN-OUT COST 

With the best  f i t t i n g  completed subsystem curve chosen, and t h e  uncompleted 

sybsystem data points located, the run-out cos t  can be estimated. 

The method used t o  choose the best curve placed the data points of t h e  un- 

completed subsystem i n  the appropriate perspective t o  the completed subsystem, 

but each of these  points w e r e  converted t o  a percent cost;  therefore, each data 

point is  a percentage of the run-out cost, and any one may be used to obtain a 

projection of the 100% or  run-out cost  of t ha t  subsystem. 

Since any point may be used t o  estimate the run-out cost ,  the first point 

w i l l  be chosen fo r  convenience since equation (3) located the f i r s t  intermediate 

cost  point a t  a percentage of t h e  run-out cost ,  the re lat ionship of the cost  

associated with tha t  point t o  the projected cost  is known. Thus, the run-out 

cost  i s  the cost  a t  the f i r s t  point divided by the decimal percent of run-out 

cost  (X). 

A program which does the complete analysis  of cost  run-out has been ., 

completed. The data of the completed s igni f icant ly  d i f fe ren t  subsystem and the 

uncompleted subsystem i s  the only required information, w i t h  t h e  estimated run- 

out cost  a s  the information provided the  u8err 

able  t o  Msc. 

Program decks w i l l  be made avai l -  

- 8- 
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QUANTIFICATION OF EXPERTISE 

The objective of t h i s  research is the development of a r e l i ab le  method of 

predict ing various f u t u r i s t i c  cost  functions. The data t o  be used w i l l  consis t  

of subject ive evaluations in the form of 'expert '  opinion, 'expert '  being defined 

as an individual whose answers t o  cer ta in  questions can be considered r e l i a b l e  

due t o  h i s  experience in the area in question. A computer program w i l l  be de- 

veloped t o  f a c i l i t a t e  the quantification of expert ise  and t o  provide parametric 

type data  upon which decisions can be based. 

Some work in t h i s  area has previously been done i n  t h i s  area by the Rand 

Corporation. Project Delphi, of t he  early 195O's, was an attempt t o  provide 

answers t o  questions pertaining t o  the  a b i l i t y  of the United States t o  withstand 

a nuclear a t tack.  The experiment t r i e d  t o  provide the answers t o  these questions, 

but the da ta  gathered was not subjected t o  any extensive s t a t i s t i c a l  analysis.  

0 A t  the present t h e  calculat ions based upon the  multinomial d i s t r ibu t ion  are being 

performed, with these preliminary calculations giving favorable r e su l t s .  

Other work which has been done i n  t h i s  area is the  PATTERN (Minneapolis- 

Honeywell) program vhich was developed by Honeywell fo r  the  Department of Defenss 

and subsequently used by NASA. This program u t i l i z e s  expert opinion t o  rank 

various space programs according t o  t he i r  value from the standpoint of technologi- 

cal advance, nat ional  prest ige,  etc. 

The research which is t o  be undertaken d i f f e r s  from these two projects  

(Delphi and Pattern) i n  that it  w i l l  include the  statistical analysis  not under- 

taken i n  Delphi, and is not a ranking method as is Pattern. 

The problem t o  which the  research is  current ly  being applied is  one of 

determining percent cost/percent time curves for  various NASA programs. 

'experts'  being questioned are located aa Marshall Space Fl ight  Center, Hunzrville, 

The 

* - 
Alabama; and the  Manned Spacecraft Center, Eouston, Texas. 

f \ 
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The progress to the present has consisted of work on the preparation of a 

statistical model, upon which will be based the statistical analysis of the data 

received. 

and to MSC Houston has also been accomplished. 

experts involved to sketch their ideas on the various cost-time relationships. 

The data received from the initial questionnaires will be used in several 

The reaction of the experts to the questionnaire is of much interest. 

The submission of the first set of questionnaires to MSFC Huntsville 

The first set of forms asks the 

ways. 

From their reactions, it is hoped that the number of questions to be included in 

future questionnaires can be determined so as to yield as much information 88 

possible while at the same time not being so lengthy that the interest of the 

experts is lost. 

curves should be used in the second set of questionnaires and the specific types 

of curves to be used. 

Also, the data returned will provide information on how many 

The second questionnaire will differ from the first in that pre-drawn 

0 curves will be sent to the experts. 

of the curves, in their opinion, best describes each specific cost-time relation- 

ship. 

be asked for a subjective rating of their confidence in their o m  answers, and 

these ratings will be used to weight the data before analysis. 

the opinion of a judge who is more experienced in a certain area would receive 

more consideration than the opinion of judge with less experience. 

The experts will be asked to choose which 

Only one curve can be chosen for each category. The experts will also 

In this way, 

At this level it is hoped that statistical analysis will give some indication 

of the convergence or divergence of the expert opinions. 

analysis shows the judges in general agreement or the curve which best describes 

a specific cost-time relationship, it will be assumed that the appropriate area 

is quantified and the cost category eliminated from further study and data 

collection. For those categories where the judges do not agree, questionnaires 

Will again be sent, this time giving each expert additional information which 

In the cases where this 

* 
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might be of some help in re-evaluating his first answer. 

This procedure may still fail to bring the judges into agreement on which 

The opinions may, however, group 

0 
curve best describes each specific category. 

around two or at most three values. 

for this specific category, the curves are indistinguishable. 

needed, a new curve could conceivably be generated which would be a weighted 

combination of the curves in the majority. 

In this case, it may be concluded that, 

If one curve is 

If the judges disagree widely after several questionnaires, it can only be 

concluded that the judges have different experience in the area, thereby biasing 

the results. 

It is hoped that this research can contribute something to the area of 

quantification of subjective information. 

indicate a reasonably good and consistent response from the experts contacted. 

The form of the questionnaire submitted is an addendum to this section of the 

report. 

These forms will have pre-drawn curves on the next level of questioning and the 

expert will simply record the number of the cost category for the applicable 

pre-drawn curve. 

The results of the first questionnaires 

Twenty blank graph forms were submitted with the list of cost categories. 0 

z -3- 
1 



- Curve number 

0 10 20 30 40 50 60 70 80 90 100 

Percent  of Total Cost  Expended i n  S p e c i f i e d  
C o s t  Category(s )  

This curve is a p p l i c a b l e  for cost c a t e g o r i e s :  
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ABSTRACT 

Due to the tremendous growth in the size and complexity of our 

industrial organizations, a need has arisen for scientific quantitative 

approaches to the solution of a myriad of complex problems. It has been 

the practice in the past to solve production cost and efficiency prob- 

lems by use of the standard cost system, but a new technique for the 

solutfon of these problems involves the use of production cost models. 

This procedure utilizes the electrical engineer's servomechanism theory 

which expresses the variables of a system in some mathematical form 

which relates the input to the output of the system. 

The models that are most often encountered in a production pro- 

cess include the simple block, recycle case, cleanup case, closed loop 

case, and the recycle with a primary loss case. 

can then be combined to simulate a complete system. 

to use this technique for optimizing the profit yielded on a multipro- 

duct system. 

These individual blocks 

It is also possible 
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tails spelled out. 

to develop standard costs should be made; in fact, no steps can be taken 

in that direction because there will not be any standards." 

Until these requirements have been met, no attempt 

I. INTRODUCTION AND PRELIMINARY DISCUSSION 

During recent years the phenomenal growth in size and com- 

plexity of our economy and our industrial organizations has brought 

about an intense need for improved techniques of management and con- 

trol of production operations. Executives in industry have seen the 

need for a scientific quantitative approach to solve their problems, 

problems which have increased to a size such that wrong decisions can 

be tremendously costly while the information to make decisions has be- 

come a function of a myriad of variables, whose relationships to each 

other are quite complex. 

zations are made of many small units or components, each of the units 

performing a specific duty which contributes in a small manner to the 

existence of the organization. When all the components and their in- 

teractions are integrated together the result is the organization. 

Highly complex business or industrial organi- 

In the past the cost of a product, the efficiency of the sys- 

tem producing the product, and the profits realized on the product were 

usually calculated using the standard cost system, Standard costs have 

been defined as "a forecast or predetermination of what costs should be 

under projected conditions, serving as a basis of cost control and as 

a measure of productive efficiency when ultimately compared with actual 

costs. The volume level and the set of circumstances under which the 

product is produced must be carefully determined and the underlying de- 
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Standard costs were frequently developed after a company or 

an industry had extensive experience with historiral costs. A detailed 

study and analysis of past costs and the modifications of such costs in 

the light of current and future conditions provided a background for 

the introduction of a system of standard costs. 

Ordinarily, a simulated system was designed with information 

regarding station efficiencies obtained by a best estimate of the pro- 

duction manager. Standard times for the labor required on the product 

were obtained by motion and time analysts performing stop watch time 

studies. Then, by adding in the cost of material and an allowance for 

overhead, the projected cost of the product was obtained. The standard 

cost system made no allowance for the proportion of the labor which had 

already gone into a product unit which was spoiled further down the pro- 

duction line. 

system which would account for the feedback of unacceptable units and 

the waste of labor performed on spoiled units. 

Therefore, it seemed necessary to devise a cost control 

The electricalengineer for years has been utilizing methods which 

establish mathematical expressions for the components and their inter- 

actions within highly complex electronic systems. 

fer functions" and block diagram flow has been especially useful for 

solving problems in servomechanism (feedback control) systems. Since 

these methods have been found to be so highly successful in the analysis 

of electronic systems, their use may yield fruitful results in analyzing 

some less technical but just as complex production problems. 

The concept of "trans- 

Whatever the nature of the many variables in a system, these 

variables should be able to be expressed in some mathematical form 
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relating them to the system itself. The transfer function is nothing 

but a mathematical expression or model of the system as a function of 

its variables, i.e., a mathematical expression of the system in terms 

of the ratio of the output to the input of the system. This transfer 

function provides a method whereby the engineer can set dawn in mathe- 

matical expressions a representation of the real system retaining as 

much as possible its many important characteristics. The expression 

strives to establish in mathematical terminology most of the pertinent 

characteristics of the system. 

Let us delve into an analysis of a simple electrical circuit 

as an example of the use of the transfer function by the engineer. Al- 

through the reader may not be acquAinted with the concepts of electri- 

city or electronic circuits, the example itself, nevertheless, is simple 

enough to show the reader the use of a transfer function, The adoption 

of the function to industrial and business systems will follow. Con- 

sider the electrical circuit shown in Figure 1. 

Figure 1 

An Electrical Voltage Divider Circuit 
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This is called a voltage divider circuit and is composed of 

a resistor R and a resistor R Let us assume that a certain voltage 

Ein 
trical current goes through the components, a certain voltage output 

isproduced which we call Eout. Thus the transformation of the input 

voltage, Ein, to the output voltage, Eout, was accomplished by the in- 

herent characteristics of the R R system. 

1 2‘ 

is applied to this circuit as shown in the diagram. As the elec- 

is different from Eout 1’ 2 

by virtue of the effect R1 and R2 had on E . This effect is Ein in 
written in the transfer function form, [R2/(Rl+R2)], which is the 

mathematical 

in. put E 

When 

expression of the R R circuit performance on the in- 1’ 2 

the input to the circuit is multiplied by the transfer 

function expression the result is Eout. Thus 

(input voltage) x (circuit transfer function) = (output voltage) 

or 

If 

Eout would 

formed the 

(Ein) IR2/(R1+R2)1 = (Eout) 

the value of R1 and R 

equal 0.75 Ein. Thus, the R1, R circuit performance trans- 

input value of the circuit (Ein), to the output value, 

were 100 and 300 ohms respectively, 2 

2 

(0 .75 Ein). 

Now, this transfer equation will be written in more general 

terms so that it may be applicable to any physical system. 

(input to system) x (system transfer function) = butput of system) 

or 

(1) x (T) = (0) 
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To aid in the analysis of overall systems, the engineer utilizes 

a block diagram technique to indicate the relationship of the above equa- 

tion (see Figure 2). The function (T) transfers the input (I) to some 

Figure 2 

Block Diagram Representation of 
a System Transfer Function Equation 

output (0). Input (I) is multiplied by the transfer function within the 

block.to obtain the output (0). The use of the block diagram to repre- 

sent the transfer equation greatly aids in the analysis of complex sys- 

tems as will be shown later in this paper. 

A business operation analysis can be developed also by the trans- 

fer function block diagram method. Consider the performance of a business 

operation to be represented by a mathematical expression or transfer func- 

tion "T." 

ness operation into some output (see Figure 3 for some generalized examples). 

The transfer function "T" transforms the inputs to the busi- 

Figure 3(a) symbolizes the input to the block as the customer's 

The input is multiplied by the business money received for a purchase. 

operation transfer function to obtain the output which is profit. The 

transfer function in this case could be a function of unit direct cost, 

overhead cost, taxes, etc. Figure 3(b) symbolizes the input of a certain 
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Customer's { ;I;;:::: 1 Profitt 

Money for 
Function 

Purchase Operation 

(Money) x Transfer function = Profit 
Business Operation 

llli;:w 1 Transfer 1 No. of =- 
Function 

Mat e r i a1 Process Products 
Manufacturing Finished 

8 I 

Units of Transfer Fucntion P Number of 

Products 
Raw Material Manufacturing Process Finished 

Figure 3 

General Transfer Relationships 

number of raw materials into a manufacturing process. The raw materials 

are then transformed into a certain number of finished products by the 

process. The manufacturing process transfer function may be a fuwtion 

of labor work materials, efficiency etc . 
At this point it may be of interest to note that the meaningful 

business ratios that economists and financiers have been monitoring for 

years as an indication of what a business is doing are comparable to 

the input-output ratios that the engineers monitor by use of the trans- 

fer function to see what electric systems are doing (see Figure 4). 
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A 
’ T2 

Meaningqul Business Ratios 
in Transfer Function Terms 

Although transfer function techniques can be applied to many business 

problTms, this paper will concentrate upon the use of the transfer func- 

tion to investigate or solve elementary manufacturing process problems. 

Ttze true worth of the technique can be seen when investigating complex 

systems. The use of this technique will be developed through the ex- 

planation of basic examples. 
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11. GENEXAL CONSIDERATIONS 

REGARDING WORK STATION MODELS 

This section of the paper will be devoted to the introduction 

and analysis of the individual work station arrangements that will be 

most often encountered in a production line process. 

Simple Block 

The most elementary model is called the "simple block" and con- 

sists of a single work station with units of material entering with 

their associated cost, the application of material and labor at the 

station, the efficiency of the station which is the probability of 

sending an acceptable unit on to the next station, and the reainder 

of the units which have to be scrapped for a salvage value which may 

be either positive, zero, or even negative, i . e . ,  the companj must pay 

to have the scrap carried away. First the following assumptions are 

made. 

Go = cost per unit entering process 

GI - cost added per unit at station 
S 

p1 = probability of accepting a unit 

Ks = total cost per unit through station 

NI - number of units entering station 

= salvage value per unit of defective units 

= number of good units leaving station 
NO 
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Figure 5 

Simple Block 

Under the assumptions of this model, it can be sepn that the num- 

ber of units entering the station multiplied by the station efficiency 

equals the number of acceptable units leaving the station, or 

The number of unitrwhich are spoiled and therefore are sold for the 

salvage value are (1 - p )N It can be seen then that the cost per 

unit through the station when 100 units are started is 
1 I' 

100 co + :-00 c1 - 100(l-pl)S co + c1 - (l-pl)S 
0 

100 P1 P1 KS * 

A method for computing the expected value and the variance of 

the cost per good unit through a single work station is shown in Appet- 

dix A. The standard deviation of the cost is shown to be aK = (Co + C1) 

Jlq/p. Let's look at an example of a station that has a relatively high 

probability of outputing a good unit and see just what effect this var- 

iance has. 

Example; Let p = .99 

(C0 + C1)(*l) 
(J - Go + C1) L . 4 9  -99 = .1O1(C0 + C1) 

.99 K 

The standard deviation of K is approximately 10 percent of Co + C1. 
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Figure 6 

Variance Control Chart 

A s  can be seen from Figure 6 ,  when the  process is  operat ing 

between 2 3a the  range of possible cos t s  is l a rge .  

The v a r i a t i o n s  i n  the above ca lcu la t ions  are not as c r u c i a l  

as they may seem s ince  i n  an ac tua l  i n d u s t r i a l  operat ion yoti are not  

malcing QE but n units, and s ince  some of t he  u n i t  cos t s  w i l l  be high 

and o t h e r s  correspondingly low,  there  w i l l  be an averaging out tend- 

ency. As  n becomes very l a rge  the t o t a l  un i t  cos ts  w i l l  zero i n  very 

near  t he  mean. 

S6mpZe BZocks in Series 

Now let 's  look a t  a series of the  simple blocks discussed above 

and determine the t o t a l  cos t  per u n i t  through each s t i g e  (or s t a t i o n )  

assumhg t h a t  we s tar t  with 100 un i t s .  

f o r  s impl ic i ty .  

Also assume zero s d v a g e  value 



Simple Blocks i n  Series 

The cost  through the f i r s t  stage i s  

100 c + 100 c1 c + c1 

100 P 1  P1 
0 

I 
0 K1 = 

The cost  through the second stage is 

and, f i na l ly ,  the cost  through the th i rd  stage i s  

With t h i s  average cost  p e r  good uni t  through a given stage, one 

can assess the buildup of cost  through the system. 

the cos t  a t  an individual stage, one has simply*to subtract  the cost  

through the preceding stage from the cost  through the stage i n  question. 

In order t o  determine 

Now suppose w e  decide to a t tack  a cer ta in  variable i n  the system; 

e.g., the labor and material  c o s t  a t  a ce r t a in  s tage or tr.e percent out- 

put of good uni t s  a t  a stage,  i n  order t o  cut the t o t a l  cc s t  of prodac- 

t ion.  Which variable should we concentrate on? 

Recall t ha t  if w e  have a variable  y which i s  a function of several  

other  variables (Xl, x x 

tionships: 

, X ) then w e  have the following rela- 2' 3,  ... n 
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AY = Axn ay Ax1 + a y  Ax2 + ... + ay 
axl ax2 axn 

In our example let's look a t  the cost through stage 2 (K2) by t h i s  analysis: 

c2 

p1p2 p2 
+ -  - co + c1 

K2 - 

L L L L L 
APl + - Ap2 

acO ac 1 ac2 ap2 
AK2 = - ACo + - AC1 + - AC2 + - 

D- ACo + - AC1 + 
p1p2 p1p2 

-%C2 - 7 co+cl Apl 

p2 P, Prl 

Examp le: Le t  Co = $1.00; c1 = $.SO; c2 = $.lo;  p1 = .9; p2 = .8 

QC2 $1.50Apl $1. 50Ap2 . 10Ap2 
- - w  +-- + Acl 

(.9)(.8) (-9)(.8) (.8) (.9)L(08) ( - 9 ) ( - 8 ) '  AK2 = 

= 1.39AC0 + 1.39AC1 + 1.25AC2 - 2 . 3 2 8 ~ ~  - 2.60Ap2 -*16Ap2 

= 1.39ACo + 1.39AC1 + 1.25AC2 - 2.32Ap1 - 2.76Ap2 

Therefore, i t  can be seen tha t  a var ia t ion i n  p 

corresponding var ia t ion i n  the t o t a l  un i t  cost  

w i l l  cause the grea tes t  2 

(K,). 

$ .276 

would 

L 

If w e  could increase p by .l, the  resul t ing savings would be 2 

per uni t .  

be $.139 per un i t ,  etc. 

If w e  could decrease C by $. lo ,  the resul t ing savings 
0 
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Recycle Case 

Thus far only an analysis of a simple system has been made, a type 

of system the engineer refers to as an "open-loop" system, i.e., a system 

which has only forward paths or elements. 

input forward to the output. 

The transfer is always from the 

The derivation of a mathematical model of LL 

straightforward system can be a simple task. 

the derivation of a model for a system described by engineers as a "closed- 

loop" system, i.e., a system that has a feedback path inherent in its opera- 

tion. As systems of this type become more complicated with feed-forward 

and feed-back loops, the normal mathematics becomes more and more burden- 

some. To analyze such complex systems the engineer, using servomechanism 

theory, utilizes a method of manipulating block diagrams to investigate 

the properties of these systems. This manipulation of block diagrams BerVes 

to simplify the analysis of a complete system behavior and is used to de- 

rive input-output ratios of even very complex systems. To investigate a 

production closed-loop system, let uselook at the manufacturing recycle 

But now let us look into 

case. In this system it is assumed that N units of raw material are sup- 

plied t o  the manufacturing process and out of manufacturing result some 

good finished products and some unacceptable or rejected products. If 

it is assumed that the rejected products can be reconditioned and sent 

again through the manufacturing process, a simple feedback loop is formed 

similar to the positive feedback systems in servomechanisms. Thus the 

rejects are fed back into a reconditioning process so that they can go 

through the manufacturing process where output is again acceptable and 

rejected products, and so forth. As can be seen, the reconditioning of 

the rejected products is not 100 percent; some units are scrapped going 

through the feedback loop. 

I 

e 



Now with the aid of the block diagram technique the recycle 

will be inveszigated. First the following assumptions are made. 

L cost per unit entering process 
cO 

C1 = cost added per uilit during first stage 

CR = cost per unit to rework spoiled units 

31 probability of accepting a unit 

= probability of accepting a reworked unit 
P1 

Pr 
SR = salvage value per unit of spoiled reworked units 

% = total cost per good unit 

NI = no. started in system 

No = no. good units obtained after processing 

- 

Salvage i7 

14 

case 

Figure 8 

Recycle Case 
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The total cost per good unit follows: 

= [l + (l-p )p + (l-pl) 2 2  (Pr) + * * -  + (1-P n (P,) n 1 
No’PINI 1 r  

N ~ / ~ ~ N ~  - 1/11 - (~-P~)P,I 

The problem that would confront an executive would be that of deter- 

0 mining whether or not a reconditioning project would justify the added ex- 

pense. .One aspect that can be investigated to answer this question is the 

comparative cost per unit calculated by the techniques described. 

Recall that the cost per good unit (K ) under the simple block con- 
S 

sideration is 

c + c1 - (l-P1)Ss 
0 

P1 Ks = 

%’ Therefore, for reprocessing to be profitable R must be greater tha3 
S 

i.e., Ks > s. Then 
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or 

Therefore, for reprocessing to be profitabie, the above equation must hold. 

CZeanq Case 

Often units are dirty or otherwise undesirable aftzr processing 

even though they are physically capable of performing their intended job. 

In this situation there will be a cleanup station which will perform a 

cleanup operatiox! on the unitc and then relay them back into the produc- 

tion line. 

Figure 9 

Cleanup Case 
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Example: Co = $1.00; C1 * $.lo; C 

Rend: (a) Cost per good unit (Kc) 

= $.04; SR = $.lo; p l =  .90; p, = .80 
C 

(b) Number of units which must be started if 1,000 units are 
required. 

Sol : - 
1.00 + $.lo + (1-.9) ($ .OS) - (1-.9) (1-.8) ($.lo) 

.9 + (1-.9)(.8) 

$1.00 + $.lo + $.'IO5 - S.002 - $1.103 $1.127 = - 
.9 + .08 .98 

30 looo = 1020 units - 1000 
NI - .9 + .08 .9a 

Again t52 problem of justifying the added expense of reconditioning (clean- 

up in this case) is raised. As before, 

c + c1 - (1-p )S  
0 l >  

co + c1 + (l-pl)Cc - (!-p1)(1-pc)Sc 

*1 
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r 
0 * Processing 

Again for cleanup to be profitable the above equation must hold. 

P1 
’ -  * 

1 

Closed Loop Case 

In the simple closed loop case a product is processed through an 

operation and all parts which pass inspection at the end of the operation 

go on to the next station, but parts which do not pass inspection are re- 

cycled through the operation again. The difference between the closed loop 

case and the aforementioned recycle case is that under the closed loop case 

it is assumed that no work has to be done on rejected units before they can 

be recycled. 

which are rejected at the completion of the initial cycle will eventually 

pass inspection at that station (although some units may require many 

passes) and therefore, no units will have to be scrapped for a salvage 

It is further assumed under the closed loop case that all units 

value . 
I 

Figure 10 

Closed Loop Case 

Inspection of Figure 10 will show that the number of units started (NI) 

will eventually equal the number of completed good units (No). 

NI = No 



19 

The total cost per good unit follows: 

c1 
P1 P1 

c + c1 - (I-p )C 
0 1 0 -  - co + - K =  

Recycle with a LOSS Case 

The recycle with a primary loss case is again a model where spoiled 

or rejected units are recycled through the process via 

rework station, but under this case units are recycled due to a rejection 

following a second station which has received acceptable units from an ini- 

tial processing station. 

units are either accepted and sent on to the second station or rejected and 

scrapped at a salvage value. 

either accepted and sent on to the third station or rejected and sent back 

to the start of the i n i t i a l  stage via a recycle station. 

an expense incurring 

Upon processing completion at the initial station, 

At the end of the second station units are 

0 

Figure 11 

Recycle with a Primary Loss Case 

The number of good units through the system: 
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The cost of a good unit follows: 

Regd: (a) The number of units which must be started if it i s  desired to 
get 100 units out. 

(b) Cost of producing 100 good units. 

Sol : - 

131[$1+.2+( .8) (.l)-( .2) (.25)+( - 8 )  (.l) (.15)-(.8) (.1) (.3) (.25) 
( -8 )  ( 09) (b) K = 

Extmpte of BZock Combinations 

Let's look at an example which requires the use of a combination 

of the blocks which have been discussed. 

tracted from four different locations in the system. 

Notice that products may be ex- 



Figure 12 

Simulated System Diagram 

Rend: (a) How many units must be started if 1,000 acceptable finished 
units are needed at location #4? 

What is the cost per acceptable finished unit at location #4? (b) 

0 

(c) Determine the mathematical models for the output and cost per 
good unit at locations ill, 82, and 8 3 .  

Sol : - 
(a) First by inspection it can be seen that the probability of 

a good unit at location #4 is 

+ (1-P1)P4PgP3 1 - (1--P2)Pr 
’1’2’3 

Then, in order to ascertain the number of units which must 
be started in order t o  obtain 1,000 acceptable finished units, 
we simply divide the required number of finished units by the 
probability of a single good unit; i.ec, 
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or 

1000 = .8729 NI 

NI = 1146 units 

(b) Likewise, the cost  per good unit at location 14 can also be 
determined by inspection; i.e., 

'lP2'3 + (l-P,)P,P,p3 1 - (1-P2)Pr 

*9)(09)(025) + (. 1) (. 15)+(. 1) (-9) (. 15) .9)[.5+(.l)(=l)L + ( 
+ ( 1 - (*1)( .9)  1 - (*1)(.9) 

K =  + (.1)(.9)(.!3)(.25) 

1 + .SO5 + .222 + ,0487 
.8729 K =  

K = $2.03 per unit 

Thus it is shown that for the costsand efficiencies depicted 
in the above illustration, 1,146 units must be started to 
obtain 1,000 good units at a cost of $2.03 per unir - 
$2,030 total cost .  

( c )  By inspection, the mathematical models for the required number 
of units to be started (NI) to get a given number of units 
out is as follows: 

p1(1-p2) (l-Pr) 
NI 

I 

No 1 - (1'P2)Pr 
Likewise, the cost per good finished unit is as foliows: 

I 

I . I  

I 
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The mathematical models for units started and costs at loca- 
tions #2 and #3 are found the same way and are as follows: 

At location 82: 

At location #3: 

It may be interesting now to look at an actual production system 

and to see how the concept of cost models can be applied. This system, 

which consists of the assembly of semiconductors, is relatively complex 

and will serve to show that the application of cost models is feasible 

regardless of the complexity of the system. The diagram below shows the 

flow of the assembly from station to station with the probability of a 

good unit out of a station. The associated labor cost at a station is 

shown as L-xxxx and the material cost is shown as M-xxxx. A numerical 

solution for the system output and cost per unit is not presented, but 

could easily be calculated using the techniques described previously. 
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TIT. OPTTMTZTNG PROFIT 
ON A MULTIPRODUCT SYSTEM 

Most of our discussion in this paper so far has been restricted 

to the determination of system efficiencies and cost per unit of product. 

Now let's expand these ideas and apply them to a system which produces 

several different products at different locations along the production 

line. This situation could occur when, after processing at a station, 

some units are drained off and sold, while the remaining units are sent 

to the next processing station to be made into other types of products. 

This system is used when there is a known market for each product and 

the problem that the management must answer is how many raw units must 

be started initially in order to maximize the profit on the multiproduct 

system. Under these conditions it can be seen that profits on the prod- 

ucts can be optimized, but the total cost of production will not neces- 

sarily be optimized; i.e., it may be less expensive to produce at volumes 

other than the volume which optimizes profit. 

This type of problem could be solved by the use of linear or inte- 

ger programming, but it will be shown that the problem can also be solved 

using the feedback block diagram theory which has been discussed in this 

paper. The example below will illustrate the applicability of this meth- 

od on a typical production system. 

Example: 

In the system below assume that there are four different products 

extracted from four different locations along the production line, Assume 

that we know the consumer demand (N) for each product, the price per unit (P) 

which will be charged for each product, and the marketing expense per unit (M) 
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e 

associated with each product, 

any product is worthless. 

Further assume that any overproduction on 

Let N1 = 1000 

N2 = 1500 

N3 = 2000 

N4 = 300 

Figure 14 

Simulated Multiproduct System 

M1 = $1.00 

M2 = $4.00 

M3 = $3.00 

M4 = $2,00 

PI = $100 

P2 = $200 

P3 = $250 

P4 = $500 

No = Number of units started 

First we calculate the number of units which must be started to satisfy 

the demand for each product. 

= Nl/(l-pl) = 1000/(1-.9) = 10,000 units 
1 NO 
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IN3/PlP2 (l-Pj) I [2000;( . 9 )  ( .8) (.OS> I 
- - = 46,620 units N =  1 - (1-P2)Pr 1 - (.2)(.8) 3 0 

Next we calculate the manufacturing cost trrough the sjstem. 

Then the equation for total profit follows: 

4 4 

i= 1 151 
Profit = 1 Nipi - 1 N ~ M ~  - mfg. cost 

Since profit is a linear function of N, we only need to check the profit 

at the four volume levels indicated which will satisfy the four required 

demands respectively 

Check profit a t  No = 368 units: 

= (368)($24.43) = $8,990 

4 4 

i= 1 i= 1 
Profit = 1 P ~ N ~  - 1 M ~ N ~  - mfg. cost 

PINl = (No)(l-pl) (P,) = (368)(.1)($100) = (36)($100) = $3,600 

= (368)(.0429) x ($200) = (15)($200) = $3,000 
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- 

c 

(368)(.0429) x ($250) = (15)($250) = $3,750 

= (368)(.814) x ($500) = (299)($500) = $149,500 

Profit = $3600 + $3000 + $3750 + $149,500 - (36)($1) - (15)($4) 
- (15) ($3) - (299) ($2) - $8990 

= $159,850 - $739 - $8990 
= $150,121 

Check profit at No = 10,000 units: 0 
Mfg. cost = 10,000($24.43) = $244,300 

= (10,000/.1)($100) = $100,000 PINl 

P2N2 = (10,000) ( .0429) x ($200) = (423) ($200) = $85,830 

= (10,000)(.0429) x ($250) = (429)($250) = $107,250 P3N3 

P4N4 = (10,000)(.814) x ($500) = (8140)($500) = (100)*($50G) = $150,000 

Profit - $100,000 + $85,800 + $107,250 + $150,OGc) - (1000)($1) 
- (429)($4) - (429)($3) - (300)($2) - "" ,>L -iL 3CO 

= $433,050 - $4603 - $244,300 
= $194,147 

~ -~ * 
8140 units exceed the demand for produt #4 
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Check profit at No = 34,965 units: 
0 

Mfg. cost  = 34,965($24.43) = $854,195 

PINl = (34,965)<.1)($100) = (3496) ($100) = (1000) ($100) * $100,000 

P2N2 = (34,965)(.0429) x ($200) = (1500)($200) 

= (1500) ($200) = $300,000 

= (34,965) (.0429) x ($250) = (1500) ($250) 

= (1500)($250) = $375,000 

P3N3 

P4N4 = (34,965) (.814) x ($500) = (28,462) ($500) = (300) ($500) 

= $150,000 

Profit = $100,000 + $300,000 + $375,000 + $150,000 - (1000)($1) 
- (1500)($4) - (1500)($3) - (300)($2) - $854,195 

= $925,000 - $12,100 - $854,195 
= $58,706 

Check profit at No = 46,620 units: 

Mfg. 

PINl 

P2N2 

P3N3 

P4N4 

Prof t = $100,000 + $300,000 + $5,,,000 + ,150,000 
-(lOOO) ($1) - (1500) ($4) - (2000) ($3) - (300) ($2) - $1,138,927 

* $1,050,000 - $13,600 - $1,138,927 
= -$102,527 

cost = 46,620($24.43) = $1,138,927 

= (1000)($100) = $100,000 

= (1500)($200) = $300,000 

= (2000)($250) = $500,000 

= (300)($500) - $150,000 
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A graphical plot of the number of units started versus the total 

profit shows that the optimum production quantity is 10,000 units. 

$200 

Total 
Profit 
(K dollars) 

$100 

0 

-$loo 

-$200 

Number Units 
Started . 

I t 
Figure 15 

+ 
Number Units 
Started . 

Graph of Total Profit vs. 
Number of Units Started 
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IV, SUMMARY 

This paper has presented the use of the transfer function block 

It is diagram method to investigate elementary manufacturing problems. 

believed that this method has many advantages over the standard cost sys- 

tem method of evaluating production costs and efficiencies. The most ob- 

vious of these is that it gives a much more accurate indication of the 

true cost of a process. 

chosen one course of action, given the result of a standard cost analysiS 

when, in reality, another course would have been optimum. We believe that 

the use of production cost models will most often give this optimum re- 

sult. The methods application to these other problems is left to the 

reader. 

There are many instances when management has 
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APPENDIX A 

DETERMINATION OF THE EXPECTED VALUE AND 
VARIANCE OF THE COST FOR THE SIMPLE BLOCK MODEL 

This appendix presents  a proof t h a t  t he  cos t  pe r  good uni t  through 

a s i n g l e  work s t a t i o n  (Ks) i s  ac tua l ly  (Co + C1)/pl (assuming zero salvage 

value f o r  s impl i c i ty ) .  

F i r s t ,  le t  x = 1 when a good u n i t  i s  produced and x = 0 when a 

bad u n i t  is produced. Then, 

E(K) Kf(K)dK 

f ( y )  - ( l - ~ ) ~ - l p ,  where y = 1, 2, ... 
J 

which is t h e  p robab i l i t y  of one good u n i t  i n  y t r ia ls .  

Then 

Theref o re ,  
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To evaluate the variance of K : 
e 

S 

V(K) = E[(k - K ) 2 ]  = E(K5-(K )2 
avg avg 

2 2  2 2  = E[(Co + C1)yl2 - [(Co + Cl)/pl2 (Co + Cl) E(Y 1 - (Co + C1) /P 

2 Now we need to know the expected value of y . 

9 

* 1 (y)(y-l)(l-p)y-2 = - 2 

dP2 Y-1 P 
3 

Now multiply out the terms 
an m 

2 y-2 - 1 y(l-p)Y-2 31 - 2 
1. Y (1-p) 3 

a 
Y=1 Y"1 P 

m OD 

1 2 1 2 

P 
1 y (1-p)Y-l - - 3 

Therefore, 
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or 
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APPENDIX B 

DETERMINLTION OF THE EXPECTED VALUE AND VUIAXCE 
OF THE COST FOR THE SIMPLE BLOCKS I N  SERIES  MODEL 

In Appendix A i t  was shown how t o  calculate  the expected value 

and variance of the  cost  per good uni t  through a s ingle  work s ta t ion.  

In t h i s  appendix i t  w i l l  be shown tha t ,  although s l igh t ly  more tedious, 

the expected value and variance of the cost  through a multistage system 

can be calculated with the same approach. As an example we w i l l  show 

tha t  the cost  through three stages (K ) is equal t o  3 

c 2  c3 c + c1 
+-+-  - 0 

As sham previously, E(K1) = (Co + Cl)/pl. Then, 

A s  before, subst i tut ion yields  

2 
= (-p2)(-1/p2) = 1/p2 

a 
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Theref ore, 

Then, 

Substitution y ie lds  

Theref ore, 

+-+-  c2 c3 c + c1 
- - 0  

[KO + Cl)/PlP21 + (C,/P,) + c 3  
= 

p1p2p3 '2'3 '3 p3 
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2 2 2 2  2 2 2  2 2  
= E W o  + C1) YlY2Y31 + E[C2Y2Y31 + E[C3Y31 

(2-P2) (2-p3) 2 (C0+c1) 2 
- ----- 

2 4 2 2 2  2 2  2 2 2  
+ 2c2c3 

p2 p3 ’1’2’3 ‘2P3 ’3 ’1’2’3 

-2(Co+c )C 2c2c3 
1 3 - -  
2 2 

’1’2’3 ‘2’3 
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